குவாண்டம் இயங்கியல்: திருத்தங்களுக்கு இடையிலான வேறுபாடு

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
உள்ளடக்கம் நீக்கப்பட்டது உள்ளடக்கம் சேர்க்கப்பட்டது
சி தானியங்கி: 88 விக்கியிடை இணைப்புகள் நகர்த்தப்படுகின்றன, தற்போது விக்கிதரவில் இ...
வரிசை 31: வரிசை 31:
{{Link FA|vi}}
{{Link FA|vi}}


[[als:Quantenmechanik]]
[[an:Mecanica quantica]]
[[ar:ميكانيكا الكم]]
[[as:কোৱান্টাম বলবিজ্ঞান]]
[[az:Kvant mexanikası]]
[[bat-smg:Kvantėnė mekanėka]]
[[be:Квантавая механіка]]
[[be-x-old:Квантавая мэханіка]]
[[bg:Квантова механика]]
[[bn:কোয়ান্টাম বলবিজ্ঞান]]
[[bs:Kvantna mehanika]]
[[ca:Mecànica quàntica]]
[[cs:Kvantová mechanika]]
[[cv:Квантăллă механика]]
[[cy:Mecaneg cwantwm]]
[[da:Kvantemekanik]]
[[de:Quantenmechanik]]
[[el:Κβαντική μηχανική]]
[[en:Quantum mechanics]]
[[eo:Kvantuma mekaniko]]
[[es:Mecánica cuántica]]
[[et:Kvantmehaanika]]
[[eu:Mekanika kuantiko]]
[[ext:Mecánica cuántica]]
[[fa:مکانیک کوانتوم]]
[[fi:Kvanttimekaniikka]]
[[fiu-vro:Kvantmekaaniga]]
[[fr:Mécanique quantique]]
[[ga:Meicnic chandamach]]
[[gl:Mecánica cuántica]]
[[he:מכניקת הקוונטים]]
[[hi:प्रमात्रा यान्त्रिकी]]
[[hif:Quantum mechanics]]
[[hr:Kvantna mehanika]]
[[hu:Kvantummechanika]]
[[hy:Քվանտային մեխանիկա]]
[[ia:Mechanica quantic]]
[[id:Mekanika kuantum]]
[[is:Skammtafræði]]
[[it:Meccanica quantistica]]
[[ja:量子力学]]
[[ka:კვანტური მექანიკა]]
[[kk:Кванттық механика]]
[[kk:Кванттық механика]]
[[kn:ಕ್ವಾಂಟಮ್ ಭೌತಶಾಸ್ತ್ರ]]
[[ko:양자역학]]
[[la:Mechanica quantica]]
[[li:Kwantummechanica]]
[[lmo:Mecàniga di quanta]]
[[lt:Kvantinė mechanika]]
[[lv:Kvantu mehānika]]
[[mk:Квантна механика]]
[[ml:ക്വാണ്ടം ബലതന്ത്രം]]
[[mr:पुंज यामिकी]]
[[ms:Mekanik kuantum]]
[[mt:Mekkanika kwantistika]]
[[ne:प्रमात्रा यान्त्रिकी]]
[[new:क्वान्टम मेकानिक्स्]]
[[nl:Kwantummechanica]]
[[nn:Kvantemekanikk]]
[[no:Kvantemekanikk]]
[[oc:Mecanica quantica]]
[[pl:Mechanika kwantowa]]
[[pnb:کوانٹم مکینکس]]
[[pt:Mecânica quântica]]
[[ro:Mecanică cuantică]]
[[ru:Квантовая механика]]
[[rue:Квантова механіка]]
[[scn:Miccànica quantìstica]]
[[sh:Kvantna mehanika]]
[[si:ක්වොන්ටම් යාන්ත්‍ර විද්‍යා‍ව]]
[[simple:Quantum mechanics]]
[[sk:Kvantová mechanika]]
[[sl:Kvantna mehanika]]
[[sq:Mekanika kuantike]]
[[sr:Квантна механика]]
[[su:Mékanika kuantum]]
[[sv:Kvantmekanik]]
[[th:กลศาสตร์ควอนตัม]]
[[tl:Mekaniks na kwantum]]
[[tr:Kuantum mekaniği]]
[[tt:Квант механикасы]]
[[uk:Квантова механіка]]
[[ur:مقداریہ آلاتیات]]
[[vi:Cơ học lượng tử]]
[[war:Mekanika kwantum]]
[[wuu:量子力学]]
[[yi:קוואנטן-מעכאניק]]
[[zh:量子力学]]
[[zh-min-nan:Liōng-chú la̍t-ha̍k]]

02:55, 8 மார்ச்சு 2013 இல் நிலவும் திருத்தம்

குவாண்டம் விசையியல் அல்லது குவாண்டம் இயங்கியல் (Quantum mechanics) என்பது நியூட்டன் அளித்த பொறிமுறையையும் மாக்ஸ்வெல் அளித்த மின்காந்தவியலையும் திருத்தி அவற்றினும் உயர்ந்த இடத்தைப் பெற்றுள்ள ஓர் இயற்பியல் கூறாகும். தற்கால இயற்பியலின் பெரும்பகுதி குவாண்டம் பொறிமுறையையும், ஐன்ஸ்டீனின் சார்பியல் கோட்பாட்டையுமே அடிப்படையாய்க் கொண்டுள்ளது.

குவாண்டம் என்ற சொல் ஒரு இலத்தீன் மொழிச் சொல்லாகும். அதன் பொருள் எவ்வளவு என்ற கேள்வியாகும். இக்காலத்தில் இச்சொல் பொட்டலம் என்ற பொருளிலேயே பயன்படுத்தப்படுகிறது. குவாண்டம் பொறிமுறையின்படி, இயற்கையின் அடிப்படைக் கூறுகள் தொடர்ந்து பிரிக்கக்கூடியவை அல்ல. உதாரணமாக, ஒளி அலை எனக் கருதப்பட்டாலும் அது ஒரு குறிப்பிட்ட அளவுக்குக் கீழ் பிரிக்கப்பட முடியாதது ஆகும். இது போலவே இடமும் காலமும் கூட ஒரு அளவுக்கு மேல் சிறியதாக்கப்பட முடியாது என்பது குவாண்டம் பொறிமுறையின் துணிபு ஆகும்.

குவாண்டம் இயற்பியல் நியூட்டனின் இயற்பியலுடன் அடிப்படையிலேயே வேறுபடுகின்றது. நியூட்டனின் இயற்பியலில் நாம் இயற்கையின் போக்கை மாற்றாமல் அதனை ஆராய முடியும் எனக் கருதப்பட்டது. ஆனால் ஹைஸன்பர்க், இந்நூற்றாண்டின் தொடக்கத்தில், இக்கருத்து தவறு என நிறுவினார். நாம் இயற்கையின் ஒரு பகுதியைக் கவனிக்கும் செயலே (the act of observation) அதன் போக்கை மாற்றும் என அவர் நிறுவினார்.

இதனால் நியூட்டனின் இயற்பியலில் இருந்து வந்த பிரபஞ்சத்திலிருந்து முழுக்க விலகிய நோக்கு (entirely objective view of the universe) எனும் கோட்பாடு நீங்கியது. அளவீடு என்பது ஒதுக்கப்பட முடியாத ஒரு பகுதியானது.

மேலும், ஒரு எலெக்ட்ரானின் இடத்தை நிர்ணயிக்கச் செய்யப்படும் ஒரு அளவீட்டினால் அதன் திசைவேகம் மாறிப்போகும் என்பதால் அதன் இடத்தையும், திசைவேகத்தையும் (சரியாகச் சொன்னால் அதன் இடத்தையும், அதன் உந்தத்தையும் (momentum)) ஒரே நேரத்தில் மிகச்சரியாக நிர்ணயிக்க முடியாது என்று அறிவித்தார் அவர். இது இன்னாளில் ஹைஸன்பர்க்கின் ஐயப்பாட்டுக் கொள்கை என அழைக்கப்படுகிறது. இது குவாண்டம் இயற்பியலின் ஓர் அடிப்படைக் கோட்பாடாகும். இதனால் இயற்கையின் நிலையையோ போக்கையோ மனிதன் முழுமையாக அறிந்து கொள்ள முடியும் என்ற (லேப்லேசு போன்றவர்கள் கொண்டிருந்த) கொள்கை வீழ்ந்தது.

இந்த ஹைஸன்பர்க்கின் ஐயப்பாட்டு கொள்கைகளை இரண்டு விதமாக புரிந்து கொள்ளலாம். உதாரணமாக ஒரு எலக்ட்ரானின் இடத்தையும் உந்தலையும் மிகத்துல்லியமாக 'அளக்க' முடியாது என்று நினைக்கலாம். அதாவது ஒரு குறிப்பிட்ட எலக்ட்ரான் குறிப்பிட்ட சமயத்தில்எந்த இடத்தில் இருகிறது, அதன் உந்தல் என்ன என்பதை நாம் அளக்க முடியாது. ஆனால் எலக்ட்ரானுக்கு உந்தமும் இடமும் இயற்கையில் மிகத்துல்லியமாக இருக்கின்றன. நமக்குத்தான் அளக்க முடியாது. ஐன்ஸ்டைன் இந்தக் கொள்கையையே ஆதரித்தார். நீல்ஸ் போர் என்பவர் இன்னொரு விதமாக விளக்கினார். அதன் படி, எலக்ட்ரானுக்கு (அல்லது எந்தப்பொருளுக்கும்) இடமும் உந்தலும் ஒரே சமயத்தில் மிகத்துல்லியமாக ‘கிடையாது'. நம்மால் அளக்க முடியுமா அல்லது முடியாதா என்பதை விட, எலக்ட்ரானுக்கு ஒரு இடமும் உந்தலும் ‘ஏறக்குறையத்தான்' இருக்கும். தற்போது ஐன்ஸ்டைனின் வாதத்தை விஞ்ஞானிக்கள் ஏற்றுக்கொள்ளவில்லை. நீல்ஸ் போரின் விளக்கமே பெரும்பாலும் ஏற்கப்பட்டு இருக்கின்றது. இரு தரப்புமே விவாதிக்கப்படுகின்றது.

வரலாறு

குவண்டம் விசையியலின் (Quantum Mechanics ) பிறப்பு என்பது 17 மற்றும் 18 ஆம் நூற்றாண்டுகளில் ஆரம்பிக்கிறது . அது, ராபர்ட் ஹூக் (Robert Hooke), கிறிஸ்டியன் ஹைஜன்ஸ் (Christian Hygens) மற்றும் லியோனர்ட் ஆய்லர் (Leonard Euler) ஆகிய அறிஞர்கள் ஒளியின் அலைக்கொள்கையை (Wave theory of light) வெளியிட்டதிலிருந்து தொடங்குகிறது. 1803 ல், புகழ் பெற்ற அறிஞர் தாமஸ் யங்க் (Thomas Young), இரட்டை பிளவு ஆய்வினைச் (Double Slit Experiment) செய்து, அதனை "ஒளி மற்றும் வண்ணங்களின் நிலை (On the nature of light and colour)" என்ற ஆய்வுக் கட்டுரையை வெளியிட்டார். இந்த ஆய்வு, ஒளியின் அலைக் கொள்கையை ஏற்றுக் கொள்வதற்கு, மிக முக்கிய பங்கு வகிக்கிறது.

Black Body Radiation எனப்படும் கருப்புப் பெட்டக கதிரியக்கம் அல்லது கருப்பொருள் கதிரியக்கம் என்ற நிகழ்வை விளக்க, பல அறிஞர்கள் முயன்றனர். சோதனையை அடிப்படையாகப் பெறப்பட்ட ஆய்வு (Experimental results ) முடிவுகளை கோட்பாடு சார்ந்த ஆய்வுகளால் (Theoretical results) விளக்க முடியாமல் இருந்தது. Raleigh Jeans என்ற விஞ்ஞானி அலைக்கொள்கையைப் பயன்படுத்தி உருவாக்கப்பட்ட தனது Theoretical results-ஐ வெளியிட்டார். இந்த ஆய்வானது, குறைந்த அலை எண்கள் (Frequency ) உள்ள ஒளி ஆற்றல் அளவினை மிகச்சரியாகக் கணித்தது. ஆயினும், அதிக அலை எண்கள் (Frequency ) உள்ள ஒளி ஆற்றல் அளவினை இந்த ஆய்வினால் விளக்க முடியவில்லை (இதுதான் ultraviolet catastrophe என அழைக்கப்படுகிறது).

பின்னர், மேக்ஸ் பிளான்க் (Max Plank) என்ற ஆய்வாளர், ஒலியினை photon எனப்படும் துகள்களாகக் கருதியதன் மூலம், இந்தக் குறைபட்டினைப் போக்க முடிந்தது. இவரின் இந்த ஆய்வே, குவாண்டம் இயற்பியல்/விசையியல்-க்கு வழிவகுத்தது. இதுவே Quantum Mechanics-ற்கு தோற்றத்திற்கு வழிவகுத்தது. எனவே, இந்த ஆய்வு சமர்ப்பிக்கப்பட்ட நாளினை, Quantum Mechanics-ன் பிறந்த நாள் என்றுகூட அழைக்கலாம்.

வார்ப்புரு:Link FA வார்ப்புரு:Link FA வார்ப்புரு:Link FA

"https://ta.wikipedia.org/w/index.php?title=குவாண்டம்_இயங்கியல்&oldid=1342619" இலிருந்து மீள்விக்கப்பட்டது