காற்றியக்கவியல்

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்
ஒரு விமான இறக்கையின் பாதையில் சுழிப்பு, புகை கொண்டு காட்டப்பட்டுள்ளது. காற்றியக்கவியல் ஆராய்ச்சியில் தொடர்புடைய பல கோட்பாடுகளில் சுழிப்புகளும் ஒன்றாகும். இறக்கையின் மேல் மற்றும் கீழ் பகுதிகளின் அழுத்த வேறுபாடுகளின் காரணமாக சுழிப்புகள் உருவாகின்றன. இறக்கையின் கீழ்ப்பாகத்திலுள்ள அதிக அழுத்தக் காற்று, மேல் பாகத்திலுள்ள குறைவழுத்தப் பகுதியை நோக்கிச் செல்லும்போது சுழிப்புகள் உருவாகின்றன.

காற்றியக்கவியல் (Aerodynamics) என்பது காற்றின் போக்கைப் பற்றியும், இயக்கத்தைப் பற்றியும் விவரிக்கும் அறிவியலாகும். இது இயக்கவியலின் ஒரு பகுதியாகும். குறிப்பாக, ஒரு நகரும் பொருளுடன் காற்று தொடர்பு கொள்வதை மையமாகக் கொண்டதாகும். காற்றியக்கவியல் என்பது பாய்ம இயக்கவியல் மற்றும் வளிம இயக்கவியல் போன்றவற்றின் துணைப்பகுதியாக அமையும், இரண்டுக்குமிடையில் பல கோட்பாடுகள் பகிர்ந்துகொள்ளப்படும். காற்றியக்கவியல் எப்போதும் வாயு இயக்கவியல் எனப்பொருள்படவும் பயன்படுத்தப்படும், ஆனால் வாயு இயக்கவியல் அனைத்து வாயுக்களுக்கும் பயன்படுத்தப்படும்.

பொருளடக்கம்

மேற்பார்வை[தொகு]

ஒரு பொருளைச் சுற்றி காற்றின் இயக்கத்தைப் புரிந்து கொள்ளல் (இது பாய்வுப் புலம் என அழைக்கப்படும்) அப்பொருளின் மீதான விசைகளையும் திருப்புத்திறன்களையும் கணக்கிட உதவி செய்யும். ஒரு பாய்வு புலத்துக்காக கணக்கிடப்படும் வழக்கமான பண்புகள்: திசைவேகம், அழுத்தம், அடர்த்தி மற்றும் வெப்பநிலை. இவை பாய்வுபுலத்தின் இடநிலை மற்றும் காலத்தைப் பொறுத்து அமையும்.

காற்றியக்கவியலை நடைமுறையில் ஏற்படும் பல தேவைகளுக்கேற்ப பல வழிகளில் பிரித்து ஆராயலாம். முதல் பாகுப்பாட்டு வகை பாய்வுச் சூழலைப் பொறுத்தது. வெளிப்புற காற்றியக்கவியல் என்பது பல்வேறு வடிவங்களில் உள்ள திடமான பொருட்களைச் சுற்றிலும் உள்ள பாய்வைப் பற்றிய படிப்பாகும். ஒரு விமானத்தில் உள்ள ஏற்றம் மற்றும் இழுவை போன்றவற்றை மதிப்பிடுதல் அல்லது ஒரு ஏவூர்தியின் முகப்பில் உருவாகும் அதிர்வலைகள் ஆகியவை வெளிப்புற காற்றியக்கவியலுக்கு எடுத்துக்காட்டுகளாகும். உட்புற காற்றியக்கவியல் என்பது திடமான பொருட்களின் வழியாகச் செல்லும் பாய்வைப் பற்றிப் படிப்பதாகும். உதாரணத்திற்கு, உட்புற காற்றியக்கவியல் என்பது ஒரு தாரை எந்திரம் வழியாக அல்லது ஒரு குளிர்சாதனப் பெட்டியின் குழாய் வழியாக செல்லும் காற்றுப் பாய்வைப் பற்றிய படிப்பைக் கொண்டிருக்கும்.

இரண்டாவதாக, பாய்வு வேகத்துக்கும் ஒலியின் வேகத்துக்கும் உள்ள விகிதம் சார்ந்து காற்றியக்கவியல் வகைப்படுத்தப்படும். இது மாக் எண்ணைப் பொறுத்து பிரிக்கப்படுகிறது. பாய்வு வேகம் ஒலியின் வேகத்தைவிட குறைவாக இருப்பின், அதாவது மாக் எண் 1-ஐ விடக் குறைவாக இருப்பின், அது குறை ஒலி வேக காற்றியக்கவியல் (Subsonic Aerodynamics). மாக் எண் 1 முதல் 5 வரை இருப்பின் அது மீயொலி வேக காற்றியக்கவியல் (Supersonic Aerodynamics) எனப்படுகிறது. மாக் எண் 5-க்கு மேல் இருந்தால் அது அதி-மீயொலி வேக காற்றியக்கவியல் (Hypersonic Aerodynamics) என அழைக்கப்படுகிறது. மேலும், மாக் எண் 1-ஐவிட சற்றே குறைவாகவோ அதிகமாகவோ அல்லது சமமாகவோ இருப்பின் அது ஒலி ஒத்த வேக காற்றியக்கவியல் (Transonic Aerodynamics) என்றழைக்கப்படும்.


மூன்றாவதாக, பாய்வில் உள்ள பாகுநிலையைப் பொறுத்தும் காற்றியக்கவியல் வகைப்படுத்தப்படும். எடுத்துக்கொள்ளப்படும் பிசுபிசுப்புத்தன்மை குறைவாக இருப்பின், அதாவது புறக்கணிக்கக்கூடிய அளவில், அது பாகுமையற்ற பாய்வு (Inviscid Flow) என்றழைக்கப்படும். பிசுபிசுப்புத்தன்மை அதிகமாக இருப்பின் அது பாகுநிலைப் பாய்வு (Viscous Flow) என்றழைக்கப்படும்.

வரலாறு[தொகு]

முற்கால சிந்தனைகள் - பழங்காலங்களிலிருந்து 17-ஆம் நூற்றாண்டு வரை[தொகு]

லியொனார்டோ டா வின்சியின் பறக்கும் இயந்திரத்துக்கான வடிவமைப்பு(c. 1488). இந்த இயந்திரம் ஒரு ஆர்னிதோப்டர், பறவையை போல் அடிக்கும் இறக்கைகள் கொண்டது, 1505இல் இவ்வடிவமைப்பு வெளியிடப்பட்டது.

ஆயிரக்கணக்கான வருடங்களாக மனித இனம் காற்றியக்க விசைகளை பாய்மரப்படகு, காற்றாலை போன்றவற்றை இயக்குவதற்கு பயன்படுத்திவந்துள்ளது.[1] வரலாறு பதிவு செய்ய ஆரம்பிக்கப்பட்ட காலத்திலிருந்தே பறத்தல் தொடர்பான பலவித கதைகள் புழங்கிவருவதை நாம் காண்கிறோம்[2], உதாரணமாக இகாரசு மற்றும் டெடாலசு போன்றோரின் கதைகள்.[3] காற்றெதிர்ப்பு போன்ற (இழுவை போன்ற)காற்றியக்கத்தின் சில விளைவுகள் அரிஸ்டாட்டில், லியொனார்டோ டா வின்சி, கலீலியோ கலிலி போன்றோரால் பதிவு செய்யப்பட்டிருந்த போதிலும், 17-ஆம் நூற்றாண்டுக்கு முந்தைய காலகட்டம் வரை காற்றின் பாய்வு சம்பந்தமான அளவுசார் தேற்றங்கள் ஏதும் வளர்த்தெடுக்கப்படவில்லை.

1505இல், லியொனார்டோ டா வின்சி கோடக்ஸ் ஆன் த பிளைட் ஆஃப் பேர்ட்ஸ் ('Codex on the flight of birds') என்ற புத்தகத்தை எழுதினார், இது காற்றியக்கவியல் பற்றிய மிக பழமையான ஆய்வுக்கட்டுரைகளுள் ஒன்றாகும். ஒரு பறக்கும் பறவையின் புவியீர்ப்பு மையம் அதன் அழுத்த மையத்துடன் ஒன்றாவதில்லை என்றும், ஒரு ஒர்னிதோப்டரின் கட்டமைப்பை, ஒரு பறவையின் இறக்கைகளைப் போல் வடிவமைத்ததும் அவர்தான்.

காற்றின் எதிர்ப்புத்திறனின் கோட்பாட்டை முதன்முதலில் வடிவமைத்தது சர் ஐசக் நியூட்டன் ஆவார்,[4] அதன் மூலம் முதல்தலைமுறை காற்றியக்கவியலாளர்களுள் ஒருவரானார். அக்கோட்பாட்டின்படி, ஒரு அமைப்பு/தொகுதியின் மேல் செயல்படும் இழுவையானது அவ்வமைப்பின் பரிமாணம், அது பயணிக்கும் பாய்மத்தின் அடர்த்தி, இரண்டாம் புயவுக்கு உயர்த்தப்பட்ட அதன் வேகம் ஆகியவற்றைச் சார்ந்தது. மிகக் குறைந்த பாய்வு வேகங்களுக்கு இக்கோட்பாடு சரியாக இருந்தது. பாய்ம ஓட்டத்தில் பாய்ம ஓட்டத்துக்கு குறிப்பிட்ட கோணத்தில் சாய்ந்திருக்கும் ஒரு தட்டையான தகட்டின் மீது செயல்படும் இழுவை விசையை கணக்கிட நியூட்டன் ஒரு விதியை வடிவமைத்தார். இழுவை விசையை F என்றும் அடர்த்தியை ρ என்றும் தகட்டின் பரப்பளவை S என்றும் பாய்வு வேகத்தை V என்றும் மற்றும் அமைவுக்கோணத்தை θ என்றும் குறித்தால் அவரது விதி F = \rho SV^2 \sin^2 (\theta) என்ற சமன்பாட்டால் குறிப்பிடப்படுகிறது.

நியூட்டனின் அச்சமன்பாடு சில இடங்களைத் தவிர்த்து மற்றனைத்து இடங்களிலும் தவறான முடிவுகளையே தருகிறது. குறைந்த அமைவுகோணங்களில் ஒரு அமைப்பின் மீது செயல்படும் இழுவை, கோணங்களுக்கு நேர்விகிதத்தில் உள்ளது. ஆனால், நியூட்டன் சமன்பாடு இழுவை அமைவுகோணங்களோடு இருபடி வீதத்தில் அதிகரிப்பதாகக் கூறுகிறது. அச்சமன்பாடு இழுவையை அளவுக்கதிகமாக காட்டியிருப்பதால், இழுவையை ஈடுசெய்யத் தேவையான உந்துவிசை அதிகமாகத் தேவைப்படும் என்ற அச்சம் மனித இனத்தின் வான்பயண ஆரம்பத்தை தாமதப்படுத்தியிருக்கக்கூடும். ஆயினும், அச்சமன்பாடு மிக மெல்லிய தகடுகளுக்கு, அமைவுகோணம் அதிகமாக இருக்கும்போதும் பாய்வுப் பிரிவு ஏற்படும்போதும் (அ) பாய்வு வேகம் மீயொலி வேகத்திலிருக்கும்போதும், பொருந்திப்போகிறது.[5]

நவீனத் தொடக்கங்கள் - 18 முதல் 19வது நூற்றாண்டு வரை[தொகு]

சர் ஜார்ஜ் கேலியின் மிதவை வானூர்தி வரைபடம், காற்றியக்கவியல் வடிவங்களில் மிகப் பழமையான முயற்சிகளில் ஒன்று.

1738இல் டச்சு-ஸ்விஸ் கணிதவியலாளரான டேனியல் பெர்னோலி ஹைட்ரோடைனாமிகா என்னும் தனது புத்தகத்தை வெளியிட்டார், அதில் அவர் அழுத்தம், அடர்த்தி மற்றும் திசைவேகம் ஆகியவற்றுக்கிடையேயான அடிப்படைத் தொடர்புகளை விளக்கினார்; முக்கியமாக, இப்புத்தகத்தில்தான் ஒரு வகையில் காற்றியக்க ஏற்றத்தைக் கணக்கிட உதவும் பெர்னௌலி தத்துவம் விளக்கப்பட்டிருந்தது.[6] பாய்மங்களின் பாய்வுக்கான மிகப் பொதுவான சமன்பாடுகளை, ஆய்லர் சமன்பாடுகள், 1757-இல் லியோனார்டு ஆய்லர் தனது புத்தகத்தில் பதிப்பித்தார். 18-ஆம் நூற்றாண்டின் முற்பாதியில் ஆய்லரின் சமன்பாடுகள், பாகுநிலையின் விளைவுகளை விளக்கும்படி விரிவாக்கப்பட்டன. அவையே நேவியர்-ஸ்டோக்சு சமன்பாடுகள் ஆகும்.

சர் ஜார்ஜ் கேலி என்பவரே பறத்தலுக்கான நான்கு காற்றியக்கவியல் விசைகளை இனங்கண்ட முதல் நபராவார் - எடை, ஏற்றம், இழுவை, மற்றும் உந்துவிசை; மேலும் அவற்றுக்கிடையேயான தொடர்புகளையும் அவர் கண்டறிந்து விளக்கினார்.[7] நிலையான பறத்தல் ஏற்படுவதற்கு ஒரு பறக்கும் இயந்திரத்தில் உள்ள இழுவையானது உந்துவிசையால் ஈடுசெய்யப்பட வேண்டும் என்று கேலி நம்பினார். மிகக் குறைந்த இழுவை கொண்ட காற்றியக்கவியல் வடிவங்களை இயற்கையில் தேடினார். மீனின் குறுக்கு வெட்டுத் தோற்றங்களையும் அவர் ஆராய்ந்தார். மீனின் உடல் தண்ணீருக்குள் நீந்தும்போது மிகக் குறைந்த எதிர்ப்புத்திறனை வெளிப்படுத்துவதற்காக வடிவமைக்கப்பட்டிருக்கிறது. அவற்றின் குறுக்கு வெட்டுத் தோற்றங்கள் சிலநேரங்களில் நவீனகால குறை-இழுவையுள்ள காற்றிதழ்கள் போலவே தோற்றமளிக்கின்றன.

18 மற்றும் 19வது நூற்றாண்டுகள் முழுவதும் காற்றெதிர்ப்புச் சோதனைகளை ஆய்வாளர்கள் மேற்கொண்டார்கள். ழான் லி ராண்ட் டெ'ஆலம்பர்ட்,[8] குசுத்தாவ் கிர்க்காஃப்,[9] மற்றும் லார்டு ரெய்லி ஆகியோரால் இழுவை கோட்பாடுகள் வடிவமைக்கப்பட்டன.[10] உராய்வுடன் கூடிய பாய்ம ஓட்டச் சமன்பாடுகள் கிளாட்-லூயி நேவியர்[11] மற்றும் ஜார்ஜ் கேப்ரியல் ஸ்டோக்ஸ் ஆகியோரால் வடிவமைக்கப்பட்டன.[12] பாய்ம ஓட்டத்தை உருவகப்படுத்த, பல சோதனைகளில் ஆய்வுப்பொருட்கள் ஓடும் தண்ணீரில் மூழ்கடிக்கப்பட்டன அல்லது உயரமான கட்டிடத்திலிருந்து கீழே விடப்பட்டன. இந்த கால கட்டத்தின் முடிவில் கஸ்டவ் ஈஃபில் தனது ஈஃபில் கோபுரத்தை, தட்டையான தகடுகள் விழும் சோதனைக்குப் பயன்படுத்தினார்.

துல்லியமாக காற்றெதிர்ப்பை அளவிடுவதற்கு முன்னமே திசைவேகம் அறியப்பட்டிருக்கும் செயற்கையான காற்றோட்டத்தில், ஆய்வு செய்ய வேண்டிய பொருளை வைத்து ஆராயலாம். இந்த அடிப்படையில் காற்றெதிர்ப்பைச் சோதித்த முதல் நபர் பிரான்சிஸ் ஹெர்பர்ட் வென்ஹாம் என்பவர் ஆவார். அவர் அப்படிச் செய்ததன் மூலம் 1871-இல் உலகின் முதல் காற்றுச்சுரங்கத்தைக் கட்டமைத்தார். அவர் ஐக்கிய இராச்சியத்தின் அரச வானூர்தியியல் சங்கத்தில் உறுப்பினராக இருந்தார், அதுவே காற்றியக்கவியலுக்கான உலகின் முதல் நிபுணர்-கூட்டமைப்பு ஆகும். நடைமுறையில் காற்றுச்சுரங்கத்தில் சோதிக்கப் பயன்படுத்தப்படும் மாதிரிகள் அவற்றின் உண்மையான மாதிரிகளைவிட அளவில் பலமடங்கு சிறியதாக இருக்கும், ஆகவே அச்சிறிய மாதிரிகளை வைத்து சோதித்தறிந்த முடிவுகளை நடைமுறையில் பயன்படுத்தப்படும் பொருட்களுக்கு பொருத்திப்பார்க்க ஒரு வழிமுறை தேவைப்பட்டது. அத்தகைய வழிமுறை, ஓஸ்பர்ன் ரெனால்ட்சின் பரிமாணங்களற்ற ரெனால்ட்ஸ் எண்ணின் கண்டுபிடிப்பின் மூலம் ஒப்புநோக்க வழிசெய்யப்பட்டது.[13] 1883-இல் வரிச்சீர் ஓட்டத்திலிருந்து வரிச்சீரற்ற ஓட்டத்திற்கு பாய்வு நிலைமாற்றத்தை ரெனால்ட்சு பரிசோதித்தார்.

19ஆம் நூற்றாண்டின் இறுதிகட்டத்தில், காற்றைவிட பாரமான வானூர்தியின் பறத்தலுக்கு முக்கியமான இரண்டு இடர்ப்பாடுகள் கண்டறியப்பட்டன. குறை-இழுவை, அதி-ஏற்றம் கொண்ட காற்றியக்கவியல் இறக்கைகளை உருவாக்குவது முதல் இடர்ப்பாடாகும். நீடித்து பறப்பதற்கு தேவையான சக்தியை எவ்வாறு நிர்ணயிப்பது என்பது இரண்டாவது இடர்ப்பாடாகும். இக்காலகட்டத்தில், நவீன பாய்ம இயக்கவியல் மற்றும் காற்றியக்கவியலுக்குத் தேவையான அடித்தட்டு வேலைகள் செய்யப்பட்டுவிட்டன. மேலும், அறிவியல் ஆர்வலர்கள் பலவித பறக்கும் எந்திரங்களை குறைவான முன்னேற்றங்களோடு சோதித்துக்கொண்டிருந்தனர்.

ரைட் சகோதரர்களின் காற்றுச் சுரங்க மாதிரி, விர்ஜினியா ஏர் மற்றும் ஸ்பேஸ் மையத்தில் காண்பிக்கப்பட்டது.காற்றுச் சுரங்கங்கள் காற்றியக்கவியல் விதிகளின் மேம்பாடு மற்றும் சரிபார்த்தலில் உருவாகின்றன.

1889இல், சார்லசு ரெனார்டு என்னும் ஒரு பிரெஞ்சு காற்றியக்கவியல் பொறியாளர், நீடித்துப் பறப்பதற்குத் தேவையான சக்தியை சரியாக கணித்த முதல் நபரானார்.[14] ரெனார்டு மற்றும் ஜெர்மன் அறிவியலாளர் ஹெர்மன் வான் ஹெல்ம்ஹோல்ட்சு பறவைகளின் இறக்கைபாரத்தை (பறவையின் எடைக்கும் இறக்கைப் பரப்பளவுக்கும் உள்ள விகிதம்) ஆராய்ந்தனர். அதன் மூலம் மனிதர்கள் தங்கள் கைகளுக்குக் கீழ் இறக்கைகளைக் கட்டிக்கொண்டு, தங்கள் சொந்த சக்தியில் பறக்க முடியாது என்பதை முடிவு செய்தனர். சர் ஜார்ஜ் கேலியின் பணியைத் தொடர்ந்து ஓட்டொ லிலியென்தால், மிதவை வானூர்திகளை மிக வெற்றிகரமாக வடிவமைத்த முதல் நபரானார். மிக மெல்லிய, வளைந்த காற்றிதழ்கள் அதிக ஏற்றத்தையும் குறைவான இழுவையையும் ஏற்படுத்தும் என்பதை லிலியென்தால் நம்பினார்.

ஆக்டேவ் சானுட் என்பவர் 1893-வரை உலகளவில் நடந்த வான்செலவியல் ஆராய்ச்சிகள் அனைத்தையும் சேர்த்து ஒரு புத்தகத்தை பதிப்பித்ததன் மூலம் காற்றியக்கவியல் மற்றும் பறக்கும் எந்திரங்கள் பற்றிய ஆர்வம் கொண்டவர்கள் அனைவருக்கும் ஒரு சிறந்த சேவையாற்றினார்.[15]

செயல்முறை விமானம் - 20வது நூற்றாண்டின் முற்பகுதி[தொகு]

சனூடின் புத்தகத்தில் உள்ள தகவல்படியும், சானூட்டின் தனிப்பட்ட உதவியாலும், ரைட் சகோதரர்கள் தங்களது சொந்த காற்றுச் சுரங்கத்தில் நடத்திய ஆராய்ச்சியின் பலனால், டிசம்பர் 17, 1903இல் முதன்முதலாக உருவாக்கிய விமானத்தை பறக்க வைப்பதற்குத் தேவையான காற்றியக்கவியல் அறிவைப் பெற்றார்கள். ரைட் சகோதரர்களின் விமானம் காற்றியக்கவியலின் பல கோட்பாடுகளை உறுதியும் செய்தது, நீக்கவும் செய்தது. நியூட்டனின் இழுவைக் கோட்பாடு இறுதியாக தவறு என நிரூபிக்கப்பட்டது. பெருமளவில் விளம்பரப்படுத்தப்பட்ட இந்த முதல் விமானப் பயணம் வலவர்கள் மற்றும் அறிவியலாளர்கள் தங்களது முயற்சிகளைப் பெருக்கவும் நவீனகால காற்றியக்கவியல் வளர்ச்சிக்கும் வித்திட்டது.

முதல் விமானப்பறப்புக்குப் பின்வந்த காலக்கட்டத்தில், பிரட்ரிக் டயிள்யூ. லேன்சஸ்டர்,[16] மார்ட்டின் வில்ஹம் குட்டா, மற்றும் நிகோலாய் சுகோவ்ஸ்கி ஆகியோர் பாய்மத்தின் சுழற்சியை ஏற்றத்தோடு தொடர்புபடுத்தும் தேற்றங்களை தனித்தனியே உருவாக்கி மேம்படுத்தினர். பின்வந்த காலகட்டத்தில் குட்டாவும் சுகோவ்ஸ்கியும் ஒரு இரு-பரிமாண இறக்கைக் கோட்பாடை உருவாக்கினர். லேன்சஸ்டரின் பணியை விரிவாக்கி, மெல்லிய காற்றிதழ்கள் தேற்றம் மற்றும் ஏற்றும்-வரி கோட்பாடுகள், எல்லைப்படலம் ஆகியவற்றின் பின்னிருக்கும் கணித்தத்தைச் செழுமைபடுத்திய பெருமை லுட்விக் பிராண்டிலையே சேரும்.[17] பிராண்டில், கோட்டிஞ்சென் பல்கலைக்கழகத்தில் பேராசிரியராக இருந்தார். மேக்ஸ் முங்க் மற்றும் தியோடர் வான் கார்மன் போன்ற பல காற்றியக்கவியல் மேம்பாட்டில் முக்கியப் பங்காற்றினர்வர்களுக்கு ஆசிரியராக இருந்தார்.

ஒலிமிஞ்சுவேகம் - 20ஆம் நூற்றாண்டின் பிற்பகுதி[தொகு]

ஒரு விமானம் வேகமாக பறக்கத்தொடங்கியதும், காற்றானது ஒரு பொருளின் அருகில் வந்ததும் அதன் அடர்த்தி மாறுபாடு அடைகிறது என்பதைக் காற்றியக்கவியலாளர்கள் கண்டறிநதனர். அதனைத் தொடர்ந்து அமுக்கக்கூடிய மற்றும் அமுக்கவியலாப் பாய்வுகளைப் பற்றிய ஆராய்ச்சியை விரிவுபடுத்தினர். அமுக்கக்கூடிய காற்றியக்கவியலில், அழுத்தம் மற்றும் அடர்த்தி இரண்டும் மாறும், அதுவே ஒலியின் வேகத்தைக் கணக்கிட அடிப்படையாகும். ஒலியின் வேகத்தைக் கணக்கிடுவதற்கான கணித மாதிரியை நியூட்டன் வடிவமைத்தார். ஆனால் பியரி-சைமன் லாப்லாசு என்பவர் வாயுக்களின் மூலக்கூறின் பண்புகளையும் வெப்பக் கொள்திறன் விகிதம் என்பதையும் அறிமுகப்படுத்தும் வரையும் அது சரியானதாகக் கருதப்படவில்லை. பாய்வின் வேகத்துக்கும் ஒலியின் வேகத்துக்கும் உள்ள விகிதம் எர்ன்ஸ்ட் மேக்கின் பெயரால் மேக் எண் எனப் பெயரிடப்பட்டது. அவர் மீயொலிவேகப் பாய்வுகளின் பண்புகளை முதன்முதலில் ஆராய்ந்தார். அதில், அடர்த்தியில் ஏற்படும் மாற்றங்களைப் பார்ப்பதற்கான ஷ்லைரென் ஒளிப்படவியல் நுட்பங்களை பயன்படுத்தியிருந்தார். வில்லியம் ஜான் மெக்குவோர்ன் ரான்கைன் மற்றும் பைரி ஹென்ரி ஹுகோநியாட் என்பவர்கள் ஒரு அதிர்வலைக்கு பின் அல்லது முன் இருக்கும் பாய்வுப் பண்புகளுக்கான கோட்பாடுகளை தனித்தனியாக வடிவமைத்தனர். ஜேகப் ஆக்ரட் என்பவர் ஒரு மீயொலிவேகக் காற்றிதழின் ஏற்றம் மற்றும் இழுவையைக் கணக்கிடுவதற்கான துவக்கநிலைப் பணியைத் தொடங்கினார்.[18] தியோடர் வோன் கார்மான் மற்றும் ஹுக் லேடிமர் டிரைடன் ஆகியோர் ஒலியொத்தவேகம் (Transonic) என்னும் சொல்லை, இழுவையானது அதிகளவில் அதிகரிக்கும் மேக் 1-ஐச் சுற்றியிருக்கும் பாய்வு வேகங்களை விவரிக்கக் குறிப்பிட்டனர். மேக் 1-ஐ அணுகும்போது இழுவை அதிகரிப்பதால், மீயொலிவேக விமானங்களை உருவாக்க முடியும் என்பதை காற்றியக்கவியலாளர்கள் மற்றும் விமானிகள் ஏற்க மறுத்தனர்.

நாசா'வின் எக்சு-43ஏ (X-43A) அதிமீயொலி ஆராய்ச்சி வானூர்தி மாக்-7 வேகத்தில் செல்லும்போது உருவாகும் அதிர்வலைகளைக் காண்பிக்கும் படம், இது கணிப்பியப் பாய்ம இயக்கவியல்படி உருவாக்கப்பட்டது.

செப்டம்பர் 30, 1935இல் ரோம் நகரில் பிரத்யேக மாநாடு ஒன்று, மீயொலிவேக விமானம் மற்றும் ஒலித்தடையை உடைக்கும் சாத்தியம் என்ற தலைப்பில் நடத்தப்பட்டது.[19] இம்மாநாட்டில் வோன் கார்மான், பிரான்டில், ஆக்ரட், ஈஸ்ட்மேன் ஜேக்கப்ஸ், அடால்ஃப் பியூஸ்மேன், ஜாக்ப்ரி இங்கிராம் டேய்லர், கேடனோ அர்டுரோ கிரோக்கோ மற்றும் என்ரிகோ பிஸ்டோல்ஸி ஆகியோர் பங்கேற்றனர். ஒரு மீயொலிவேகக் காற்றுச் சுரங்கத்திற்கான வடிவமைப்பை ஆக்ரெட் வழங்கினார். அதி வேக விமானங்களுக்கான வீச்சு இறக்கைகளுடனான விமானத்தின் தேவையைப் பற்றிய மிகச்சிறந்த விளக்கத்தை பியூஸ்மேன் வழங்கினார். நாகாவிற்காக (NACA) பணியாற்றிய ஈஸ்ட்மேன் ஜேக்கப்ஸ், அதி வேக குறையொலிவேகங்களுக்கு மிகச்சரியான காற்றிதழ்களை, தனது ஆராய்ச்சி முடிவுகளில் வழங்கினார். அது இரண்டான் உலகப் போரின் போது சில அதிகத்திறன் கொண்ட அமெரிக்க விமானங்களை உருவாக்க உதவியாக இருந்தது. மீயொலிவேக உந்துகையும் கலந்தாலோசிக்கப்பட்டது. மேற்கண்டோருள் பலரின் ஆய்வுகளின் பயனாக பெல் எக்சு-1 விமானத்தைப் பயன்படுத்தி பண்ணிரெண்டு வருடங்களுக்குப் பின் ஒலித் தடை உடைக்கப்பட்டது.

ஒலித்தடை உடைக்கப்பட்டபோது, குறையொலிவேக மற்றும் குறைவான மீயொலிவேகக் காற்றியக்கவியல் சார்பான அறிவு முதிர்ச்சியடைந்திருந்தது. மேலும் பனிப்போர் அதிகத் திறன் கொண்ட விமானத்தை உருவாக்குவதற்கான வழியை ஏற்படுத்தியது. சிக்கலானப் பொருட்களைச் சுற்றியிருக்கும் பாய்வுப் பண்புகளை தீர்ப்பதற்கான ஒரு முயற்சியாக கணிப்பியப் பாய்ம இயக்கவியல் தொடங்கப்பட்டது. அது படிப்படியாக வளர்ந்து கணினி மூலமே ஒரு விமானத்தை வடிவமைத்துவிடலாம் என்கிற நிலையை எட்டியது.

சில விலக்குகளுடன், அதிமீயொலிவேகக் காற்றியக்கவியல் பற்றிய அறிவு 1960-கள் முதல் தற்போது வரை நல்ல முதிர்ந்த நிலையை எட்டியுள்ளது. அதனையடுத்து, ஒரு காற்றியக்கவியலாளரின் இலக்குகள் திரவ ஓட்டத்தின் பண்பை புரிந்துகொள்வது பற்றியதில் இருந்து திரவ ஓட்டத்துடன் சரியான வகையில் அணுகும் ஒரு வாகனத்தை எப்படி வடிவமைப்பது என்பதற்கு மாற்றமானது. உதாரணமாக, அதிமீயொலிவேகப் பாய்வின் பண்புகளைப் புரிந்து கொள்வதில் பெருமளவு வெற்றிபெற்றிருந்தாலும், அதிமீயொலி வேகங்களில் பறக்கும் மீத்திமிசுத்தாரை விமானத்தைக் கட்டமைப்பது மிகவும் குறைந்த வெற்றியையே அடைந்தது. ஒரு வெற்றிகரமான மீத்திணிப்பொறியைக் கட்டமைப்பதுடன், தற்போதைய விமானம் மற்றும் உந்துகை முறைமைகளின் திறனை மேம்படுத்த புதிய காற்றியக்கவியல் ஆராய்ச்சிகளை நடத்த தொடர்ந்து வழிசெய்யும். இருப்பினும், தற்போதுள்ள அடிப்படை காற்றியக்கவியலில் பலவித சிக்கல்கள் உள்ளன; பாய்வானது கொந்தளிப்புப் பாய்வாக மாறுவதை அறிந்துகொள்ளல், நேவியர்-ஸ்டோக்ஸ் சமன்பாடுகளின் தீர்வுகளின் இருத்தல் மற்றும் தனித்தன்மையை நிரூபித்தல் ஆகியவை இன்னும் நிறைவுசெய்யப்படவேண்டிய வேலைகளாகும்.

சொல் பயன்பாட்டு அறிமுகம்[தொகு]

தொடர்தன்மைக் கருதுகோள்[தொகு]

தொடர்தன்மைக் கருதுகோளே காற்றியக்கவியல் முன்கணிப்புகளின் அடித்தளமாகும். உண்மையில், வாயுக்கள் ஒன்றோடொன்றும் மற்றும் திடப்பொருட்களோடும் மோதக்கூடிய தனித்தனி மூலக்கூறுகளால் ஆனவை. காற்றியக்கவியல் சமன்பாடுகளைத் தருவிப்பதற்காக, பாய்மப் பண்புகளான அடர்த்தி மற்றும் திசைவேகம் போன்றவை நுண்ணிய புள்ளிகளிலும் தெளிவாக வரையறுக்கப்பட்டுள்ளதாகவும் ஒரு புள்ளியிலிருந்து மற்றொரு புள்ளிக்கு மாறுபடுவதாகவும் அனுமானிக்கப்படுகிறது. அதாவது, இயற்கையில் தனித்தனி மூலக்கூறுகளாக இருக்கும் வளிமத்தின் பண்பு புறக்கணிக்கப்படுகிறது.

தொடர்தன்மைக் கருதுகோள் வளிமம் அரிதாகும்போது செல்லுபடியாகாது. அத்தகைய தருணங்களில், தொடர் காற்றியக்கவியலைவிட புள்ளியியல் எந்திரவியல் சிறப்பான முடிவுகளைத் தரவல்லது. நட்சன் எண் மூலம் புள்ளியியல் எந்திரவியல் மற்றும் தொடர்தன்மைக் காற்றியக்கவியல் ஆகியவற்றுக்கிடையே எதைப் பயன்படுத்துவது என்பதைத் தேர்ந்தெடுக்க உதவும்.

காப்பு விதிகள்[தொகு]

அச்சுவிசை, வேலை, வெப்பப் பரிமாற்றம் ஆகியவற்றோடு கூடிய ஒரு உள்வழிநிலை மற்றும் வெளிவழிநிலை உடைய கட்டுப்பாட்டுக் கொள்ளளவின் திட்ட வரைபடம். நிலை 1 என்பது உள்வழி நிலை 2 என்பது வெளிவழி.

காற்றியக்கவியல் சிக்கல்கள், பாய்மத் தொடர்தன்மைக்குப் பயன்படுத்துவது போல காப்பு விதிகளைப் பயன்படுத்தித் தீர்க்கப்படுகின்றன. காப்பு விதிகளை தொகையீட்டு அல்லது வகையீட்டு வடிவத்தில் எழுதலாம். அடிப்படையாக, மூன்று காப்புக் கோட்பாடுகள் பயன்படுத்தப்படும்:

  • தொடர்தன்மை:ஒரு கொள்ளளவில் ஒரு குறிப்பிட்ட திரவ நிறை நுழைந்தால், அது கொள்ளளவை விட்டு வெளியேற வேண்டும் அல்லது கொள்ளளவுக்குள் இருக்கும் நிறையை மாற்ற வேண்டும். திரவ இயக்கவியலில், தொடர்நிலைச் சமன்பாடு என்பது மின்சுற்றுகளின் கிர்ச்சாஃபின் மின் சட்டத்துக்கு ஒப்பானதாக இருக்கும். தொடர்நிலைச் சமன்பாடின் வகையீட்டுச்சமன்பாட்டு வடிவமாவது:
\ {\partial \rho \over \partial t} + \nabla \cdot (\rho \mathbf{u}) = 0

இதில், \rho திரவ அடர்த்தியாகும், u என்பது திசைவேகத் திசையன், மற்றும் t என்பது நேரமாகும். உண்மையில், சமன்பாடு காட்டுவது போல், கட்டுப்பாட்டுக் கொள்ளளவில் நிறையானது உருவாக்கப்படுவதும் இல்லை அழிக்கப்படுவதுமில்லை.[20] ஒரு நிலையுறுதிப் பாய்வில், கட்டுப்பாட்டுக் கொள்ளளவுக்குள் நுழையும் நிறையும் வெளியேறும் நிறையும் சமமாக இருக்கும்.[21] அதனையடுத்து, இடது பக்கத்தில் உள்ள முதல் உறுப்பு சுழியமாக இருக்கும். ஒரு உள்வழி கொண்ட ஒரு குழாய்வழிப்பாய்வுக்கு, படத்தில் காண்பிக்கப்பட்டது போல ஒரு உள்செல் (நிலை 1) மற்றும் வெளியேறும் (நிலை 2) பகுதிகள் கொண்ட கட்டுப்பாட்டுக் கொள்ளளவுக்கான தொடர்நிலை சமன்பாடு என்பது இப்படியாக எழுதப்பட்டு தீர்க்கப்படலாம்:

\ \rho_{1} u_{1} A_{1} = \rho_{2} u_{2} A_{2}

மேலே குறிப்பிடப்பட்டுள்ளதில், A என்பது குழாயின் உள்வழி மற்றும் வெளியேற்றத்தின் குறுக்கு-வெட்டுப் பகுதியின் மாறக்கூடிய பரப்பளவாகும். அமுக்கமிலாப் பாய்வுகளுக்கு, அடர்த்தி மாறாமல் நிலையானதாக இருக்கும்.

  • உந்த அழிவின்மை: இச்சமன்பாடு நியூட்டனின் இரண்டாவது விதியை பாய்மத் தொடர்தன்மைக்குப் பயன்படுத்துகிறது; அவ்விதிப்படி, விசையானது உந்தத்தின் கால வகைக்கெழுவாகும். இதில் பரப்பு மற்றும் பொருள் விசைகள் கணக்கிலெடுத்துக் கொள்ளப்படுகின்றன. உதாரணமாக விசை, F ஆனது, உள்செல் பாய்வின் மேல் செயல்படும் உராய்வு விசைக்காக விரிவுபடுத்தப்படலாம்.
\ {D \mathbf{u} \over D t} = \mathbf{F} - {\nabla p \over \rho}

அதே படத்தில், ஒரு கட்டுப்பாட்டு கொள்ளளவு பகுப்பாய்வு தருவது:

\ p_{1}A_{1} + \rho_{1}A_{1}u_{1}^2 + F = p_{2}A_{1} + \rho_{2}A_{2}u_{2}^2

மேலே குறிப்பிட்டபடி F என்பது சமன்பாட்டின் இடது பக்கத்தில் வைக்கப்பட்டிருக்கும், அதாவது இடதில் இருந்து வலது திசைக்கு நகரக்கூடிய பாய்வுக்கு ஏற்ப இருப்பதாகக் கருதப்படும். பாய்வின் மற்ற பண்புகளைச் சார்ந்து, வெளிவரும் விசை நேர்மறையானதாக இருக்கலாம், அதாவது எதிர்திசையில் செயல்படலாம், படத்தில் காண்பிக்கப்பட்டுள்ளபடி.

\ \rho {Dh \over Dt} = {D p \over D t} + \nabla \cdot \left( k \nabla T\right) + \Phi

இதில், h என்பது வெப்ப அடக்கம், k என்பது திரவத்தின் வெப்ப கடத்துத் திறன், T என்பது வெப்பநிலை மற்றும் \Phi என்பது பிசுக்குமைப் பரவல் சார்பு. பிசுக்குமைப் பரவல் சார்பு என்பது பாய்வின் எந்திரவியல் ஆற்றல் வெப்பமாக மாற்றப்படும் விகிதத்தை கட்டுப்படுத்துகிறது. வெப்ப இயக்கவியலின் இரண்டாவது விதியின்படி எப்போதுமே அவ்வுறுப்பு நிலையாகவே இருக்கும், ஏனெனில் கட்டுப்பாட்டு கொள்ளளவுக்கு பிசுக்குமை ஆற்றலைச் சேர்க்காது.[22] இடது பக்கத்தில் உள்ள விளக்கம் பொருண்ம வகைக்கெழுவாகும். படத்தை மீண்டும் பயன்படுத்தி, கட்டுப்பாட்டு கொள்ளவின் படியான ஆற்றல் சமன்பாடுகளை இவ்வாறு எழுதலாம்:

\ \rho_{1}u_{1}A_{1} \left( h_{1} + {u_{1}^{2} \over 2}\right) + \dot{W} + \dot{Q} = \rho_{2}u_{2}A_{2} \left( h_{2} + {u_{2}^{2} \over 2}\right)

மேலே உள்ளபடி, சுழல்தண்டுப் பணியும் (\dot{W}) வெப்ப பரிமாற்றமும் (\dot{Q}) பாய்வின் மீது செயல்புரியும். எடுத்துக்கொள்ளப்படும் சிக்கலைப் பொறுத்து அவை நேரானதாக இருக்கலாம் (சுற்றியுள்ளவற்றில் இருந்து பாய்வுக்கு) அல்லது நேரெதிராக இருக்கலாம் (பாய்வில் இருந்து சுற்றுப்புறங்களுக்கு).

இலட்சிய வாயு விதி அல்லது நிலைச் சமன்பாடு இந்த சமன்பாடுகளோடு எப்போதும் பயன்படுத்தப்படும்; அது தெரியாத மாறிகளைத் தீர்க்க ஒரு முறைமையை உருவாக்கும்.

அமுக்கமிலாக் காற்றியக்கவியல்[தொகு]

பாய்வுப் பரப்புகள் மற்றும் வளிசெல் குழாய்களில் பாய்மம், குறைவான வேகத்தில், செல்லும்போது அமுக்கமிலாக் காற்றியக்கவியல் எனப் பண்பாயப்படுகிறது. உண்மையில் அனைத்துப் பாய்மங்களும் அமுக்கக்கூடியவைகளாக இருப்பினும் பாய்வில் அடர்த்தி வேறுபாடு புறக்கணிக்கக்கூடிய அளவில் இருப்பின் அது அமுக்கமிலாக் காற்றியக்கவியலாக வகைப்படுத்தப்படுகிறது. பாய்வின் வேகம் ஒலியின் வேகத்தைவிடப் பெருமளவில் குறைவாக இருக்கும்போது இவ்வகை அனுமானம் சரியான முடிவுகளையே தருகிறது. ஆனால், பாய்வின் வேகம் அதிகரிக்கும்போது, பொருட்களோடு தொடர்பில் வரும்போது பாய்மங்கள் அமுங்கத் தொடங்குகின்றன, வேகம் குறைகின்றன. மேக் எண் என்பது சுருங்குகிற மற்றும் சுருங்காத பாய்வுகளுக்கு இடையே வேறுபடுத்த உதவும்.

குறையொலிவேகப் பாய்வு[தொகு]

குறையொலிவேகக் (குறைவான வேகமுடைய) காற்றியக்கவியல் என்பது பாய்வின் அனைத்துப் பகுதிகளிலும் பாய்வு வேகம் ஒலியின் வேகத்தினைவிட மிகக் குறைவாக இருக்கும்போது பாய்வைப்பற்றியப் படிப்பாகும். இதில் பல துணைப் பிரிவுகள் உள்ளன; பாய்வு பாகுநிலையற்ற, அமுக்கவியலா, சுழற்சியற்ற பாய்வாக இருக்கும் போது அப்பாய்வு நிலைப்பாய்வு எனப்படுகிறது. இது பாய்ம இயக்கவியலைக் கட்டுப்படுத்தும் வகையீட்டுச் சமன்பாடுகள் எளிமைப்படுத்தப்பட வழிவகுக்கிறது, அதனால் அவ்வகைப் பாய்வுச் சிக்கல்களின் தீர்வை எளிதாகக் கண்டறியலாம்.[23]. அது அமுக்கவியலாக் காற்றியக்கவியலின் சிறப்பு வகையாகும்.

ஒரு குறையொலிவேகச் சிக்கலைத் தீர்க்கையில், அமுக்குமையின் விளைவுகளைப் பயன்படுத்துவதா வேண்டாமா என்பது காற்றியக்கவியலாளரால் தீர்மானம் செய்ய வேண்டும். அமுக்குமை என்பது பாய்மத்தின் அடர்த்தியின் மாற்ற அளவை விவரிப்பதாகும். அமுக்குமையின் விளைவுகள் சிறியதாக இருக்கையில், அடர்த்தி என்பது நிலையானது (மாறிலி) என எடுத்துக்கொள்ளப்படுகிறது. அவ்வாறு எடுத்துக்கொள்ளப்படும்போது அப்பாய்வுப் புதிர் குறைவேகக் காற்றியக்கவியல் கொண்டு தீர்வுகாணப்படுகிறது. அடர்த்தியானது மாறுவதாகக் கொண்டால் அது அமுக்கக் காற்றியக்கவியல் புதிர் என அழைக்கப்படும். காற்றில், பாய்வின் மேக் எண் 0.3ஐ (கிட்டத்தட்ட நொடிக்கு 335 அடி(102m) அல்லது 60oF இல் மணிக்கு (366 km 228 மைல்கள்) மிஞ்சாத வரையில், அமுக்குமை விளைவுகள் வழக்கமாக புறக்கணிக்கப்படும். 0.3க்கு மேல், அமுக்கக் காற்றியக்கவியலால் தீர்க்கப்பட வேண்டும்.

அமுக்கக் காற்றியக்கவியல்[தொகு]

காற்றியக்கவியலின் கோட்பாடின்படி, ஒரு சீர்வரியில் அழுத்தத்தைப் பொறுத்து அடர்த்தியின் மாற்றம் சுழியமாக இல்லாதிருக்கும்போது, அதாவது அடர்த்தி மாறும்போது, அப்பாய்வு அமுக்கக்கூடியதாகக் கருதப்படும். அதாவது அமுக்கவியலாப் பாய்வைப் போலல்லாமல் - அடர்த்தியின் மாற்றங்கள் கணக்கில் எடுத்துக்கொள்ளப்பட வேண்டும். பொதுவாக, பாய்வின் ஒரு பகுதியில் அல்லது அனைத்து இடங்களிலுமே மேக் எண் 0.3க்கு மேலிருக்கும் பாய்வுகள் இவ்வகையில் ஆராயப்படு. மேக் 0.3 என்பது தோராயமான மதிப்பாகும், ஆனால் அந்த மதிப்பிற்கு கீழ் உள்ள ஒரு மேக் எண்ணுடன் பாய்வு இருக்கும்போது, அழுத்தமாற்றத்திற்கு நேராக அடர்த்தி மாற்றம் 5% க்குக் கீழாக இருக்கும். மேலும், அந்த 5% அடர்த்தி மாற்றம் என்பது ஒரு பொருளின் தேக்கப்புள்ளியில் ஏற்படுகிறது, மற்ற இடங்களில் அடர்த்தி மாற்றும் மிகக் குறைவாக இருக்கும். ஒத்தஒலிவேக, மீயொலிவேக, அதிமீயொலிவேகப் பாய்வுகள் அனைத்தும் அமுக்கப்பாய்வுகளாகும்.

ஒலியொத்தவேகப் பாய்வு[தொகு]

ஒலியொத்த வேகம் என்னும் சொல் ஒலியின் விரைவுக்குச் சற்று குறைவாகவோ அல்லது சற்று அதிகமாகவோ (பொதுவாக மேக் 0.8–1.2) இருக்கும் திசைவேகங்களைக் குறிக்கிறது. மாறுநிலை மாக் எண்ணிற்கு அருகிலுள்ள திசைவேகங்களுக்கு அருகேயுள்ள திசைவேகங்களாக இவை அறியப்படும், அதாவது மாறுநிலை மேக் எண் திசைவேகத்தை ஒரு வானூர்தி அடைந்துவிட்டால் பாய்வின் சில பகுதிகளில் பாய்வு மீயொலிவேகப் பாய்வாக மாறிவிடும்; இன்னும் அதிக வேகங்களில், குறிப்பாக மேக் 1.2 வேகத்தில், காற்றோட்டம் முழுவதுமே மீயொலிவேகப் பாய்வாகவிருக்கும். இந்த வேகங்களுக்கு இடையே காற்றோட்டத்தின் ஒரு பகுதி மீயொலிவேகப் பாய்வாகவும், மற்றவை மேக் 1-ஐ விடக் குறைவானதாகவும் இருக்கும்.

மீயொலிவேகப் பாய்வு[தொகு]

மீயொலிவேகக் காற்றியக்கச் சிக்கல்கள் என்பவை ஒலியின் வேகத்தை விட அதிகமான வேகங்கொண்ட பாய்வுகளைப் பற்றியதாகும். கான்கார்டின் ஏற்றத்தை, அது நிலைபறத்தலில் பறக்கும்போது, கணக்கிடுவது மீயொலிவேகக் காற்றியவியலுக்கு ஒரு எடுத்துக்காட்டாகும்.

மீயொலிவேகப் பாய்வு என்பது குறையொலிவேகப் பாய்வில் இருந்து மிகவும் மாறுபட்டதாகும். திரவங்கள் அழுத்த வேறுபாடுகளுக்கு ஏற்ப மாறுபவை; அழுத்த வேறுபாடுகள் என்பது ஒரு திரவம் என்பது அதன் சுற்றுப்புறத்துக்கு ஏற்ப எவ்வாறு செயல்படவேண்டும் என்பதைக் குறிக்கிறது. அதன்படி, ஒலி என்பது ஒரு திரவத்தின் வழியாகப் பயணிக்கும் மிகநுண்ணிய அழுத்த வேறுபாடாக இருப்பதால், அந்த திரவத்தில் ஒலியின் வேகமானது பாய்வில், தகவல் பயணிக்கக்கூடிய அதிகபட்ச வேகம் என்று கருதிக்கொள்ளலாம். இந்த வேறுபாடு ஒரு பொருளை திரவமானது தாக்கும்போது வெளிப்படுகிறது. பொருளுடனான அதன் தாக்கம் நகரும் திரவத்தை ஒரு நகராத நிலைக்குக் கொண்டு வரும்போது அந்த பொருளுக்கு முன், அப்பாய்மம் தேக்க அழுத்தத்தை ஏற்படுத்துகிறது. குறைவேக ஒலியியலில் அவ்வழுத்த வேறுபாடு பாய்வுக்கெதிர்த்திசையில் பயணித்து வரக்கூடிய பாய்மத்துக்கு, தடை இருப்பதை அறிவிக்கக்கூடும்; அதன்மூலம் அப்பாய்வு தடையைத் தவிர்க்கும் விதமாக வளைந்து செல்லும். ஆனால், மீயொலிவேகப் பாய்வில் அவ்வழுத்த வேறுபாட்டுத் தகவல் பாய்வெதிர்த்திசையில் பயணிக்கவியலாது. அதனால் திரவமானது பொருளை இறுதியாகத் தாக்கும்போது, அது அதன் பண்புகளை மாற்றும்படி தள்ளப்படும் -- வெப்பநிலை, அடர்த்தி, அழுத்தம், மற்றும் மேக் எண் -- போன்றவை அதிர்வலை என அழைக்கப்படும் மீளாத மற்றும் மிகவும் வன்மையான முறையில் மாறும். அதிர்வலைகள் இருத்தல் மற்றும் அதிக திசைவேகப் பாய்வுகளில் (பார்க்க ரெனால்ட்ஸ் எண்) அமுக்குமையின் விளைவுகள் ஆகியவையே குறையொலிவேகப் பாய்வுகளுக்கும் மீயொலிவேகப் பாய்வுகளுக்குமுள்ள முக்கிய வேறுபாடாகும்.

அதிமீயொலிவேகப் பாய்வு[தொகு]

அதிமீயொலிவேகம் என்பது அதீத அளவிலான மீயொலிவேகத்தைக் குறிக்கும் சொல்லாகும். 1970-களில் இச்சொல், மேக் எண் 5 மற்றும் அதை விட அதிகமான வேகங்களைக் குறிக்கப் பயன்படுத்தப்பட்டது. அதிமீயொலிவேகப் பாய்வுப் பகுதியானது மீயொலிவேகப் பாய்வுப் பகுதியின் துணைப்பகுதியாகும். இப்பாய்வின் பண்புகள்: அதிர்வலைகளின் பின்னால் அதிகளவிலான வெப்பநிலை, பிசுக்குமை இடைபடுவினைகள், மற்றும் வாயுக்களின் வேதியியற்சிதைவு அல்லது முறிவு.

தொடர்புடைய சொல்பழக்கம்[தொகு]

காற்றிதழைச் சுற்றி வெவ்வேறு வகைப் பாய்வுப் பகுப்பாய்வுகள்:      நிலைப்பாய்வுக் கொள்கை      எல்லைப் படலப் பாய்வுக் கொள்கை      கொந்தளிப்புப் பின்கல அலைவுப் பகுப்பாய்வு

அமுக்கவியலா மற்றும் அமுக்கக் காற்றியக்கவியல் பாய்வுகள் அவற்றோடு தொடர்புடைய பல விளைவுகளை ஏற்படுத்துகின்றன, உதாரணமாக எல்லைப் படலங்கள் மற்றும் கொந்தளிப்பு போன்றவை ஏற்படுகின்றன.

எல்லைப் படலங்கள்[தொகு]

எல்லை அடுக்கு என்பது பல காற்றியக்கவியல் சிக்கல்களில் முக்கியமானது. காற்றின் பிசுக்குமை மற்றும் திரவ உராய்வு என்பது இம்மெல்லிய படலத்தில் மட்டுமே முக்கியத்துவம் வாய்ந்ததாக இருக்கும். இந்தக் கோட்பாடு காற்றியக்கவியலைக் கணிதவகையில் எளிதில் சமாளிக்கவியலுகின்றதாக மாற்றுகிறது.

கொந்தளிப்பு[தொகு]

காற்றியக்கவியலில், கொந்தளிப்பு என்பது குழப்பமிகு, வாய்ப்பியற் பண்பு மாறுபாடுகள் ஆகியவற்றால் பண்பாயப்படுகிறது. குறிப்பாக, குறைவான உந்தப் பரவல், அதிக உந்தச் சலனம், மற்றும் காலவெளியில் துரிதமான திசைவேக மற்றும் அழுத்த மாறுபாடுகள் ஆகியவற்றைக் கொண்டிருக்கும்.

மற்ற துறைகளில் காற்றியக்கவியல்[தொகு]

மேலதிக தகவல்கள்: தானுந்துக் காற்றியக்கவியல்

வானூர்திப் பொறியியலைத் தவிர்த்து மேலும் பல துறைகளிலும் காற்றியக்கவியல் முக்கியப் பங்காற்றுகிறது. அனைத்து வகையான வாகன வடிவமைப்புகளிலும், குறிப்பாக தானுந்து வடிவமைப்புகளில், இது முக்கியக் காரணியாக உள்ளது. பாய்மரப் படகோட்டத்தில் விசைகள் மற்றும் திருப்புத் திறன்களைக் கணக்கிட இது உதவுகிறது. வன்தட்டு நிலை நினைவக வடிவமைப்புகளிலும் இது முக்கியக் காரணியாகவிருக்கிறது. கட்டமைப்புப் பொறியாளர்கள் காற்றியக்கவியலை, முக்கியமாக காற்று மீள்மையியல், பெரிய கட்டிடங்கள் மற்றும் பாலங்கள் மீது செயல்படும் காற்றுச் சுமைகளைக் கணக்கிடப் பயன்படுத்துகிறார்கள். நகர்ப்புற காற்றியக்கவியல் வெளிப்புற இடவசதிகளில் சௌகரியத்தை அதிகரிக்க நகர் திட்டமிடுநர்கள் மற்றும் வடிவமைப்பாளர்களுக்கு உதவும், அவை நகர்ப்புற நுட்பகாலநிலைகளை உருவாக்கி சூழல் மாசுபாட்டின் தாக்கத்தைக் குறைக்க உதவும். சுற்றுப்புற காற்றியக்கவியல் வளிமண்டல காற்றுச் சுழற்சிகளையும் சுற்றுப்புறங்களை விமான எந்திரவியல் எவ்வாறு பாதிக்கிறது போன்றவற்றை ஆராய்கிறது. வெப்பமாக்குதல்/காற்றோட்டம், எரிவாயு குழாய்க்கட்டுமானம் , மற்றும் வாகனப் பொறிகள் ஆகியவற்றில் உட்பாதைக் காற்றியக்கவியல் முக்கியமானதாகும், அவற்றில் உள்ள பாய்வு வடிவங்கள் அவற்றின் செயல்திறனைப் பலமாகப் பாதிக்கின்றன.

மேலும் காண்க[தொகு]

குறிப்புதவிகள்[தொகு]

  1. "...it shouldn't be imagined that aerodynamic lift (the force that makes airplanes fly) is a modern concept that was unknown to the ancients. The earliest known use of wind power, of course, is the sail boat, and this technology had an important impact on the later development of sail-type windmills. Ancient sailors understood lift and used it every day, even though they didn't have the physics to explain how or why it worked." Wind Power's Beginnings (1000 B.C. - 1300 A.D.) Illustrated History of Wind Power Development http://telosnet.com/wind/early.html
  2. Don Berliner (1997). "Aviation: Reaching for the Sky". The Oliver Press, Inc. p.128. ISBN 1-881508-33-1
  3. Ovid; Gregory, H. (2001). The Metamorphoses. Signet Classics. ISBN 0-451-52793-3. OCLC 45393471. 
  4. Newton, I. (1726). Philosophiae Naturalis Principia Mathematica, Book II. 
  5. von Karman, Theodore (2004). Aerodynamics: Selected Topics in the Light of Their Historical Development. Dover Publications. ISBN 0-486-43485-0. OCLC 53900531. 
  6. "Hydrodynamica". Britannica Online Encyclopedia. பார்த்த நாள் 2008-10-30.
  7. "U.S Centennial of Flight Commission - Sir George Cayley.". பார்த்த நாள் 2008-09-10. "Sir George Cayley, born in 1773, is sometimes called the Father of Aviation. A pioneer in his field, he was the first to identify the four aerodynamic forces of flight - weight, lift, drag, and thrust and their relationship. He was also the first to build a successful human-carrying glider. Cayley described many of the concepts and elements of the modern airplane and was the first to understand and explain in engineering terms the concepts of lift and thrust."
  8. d'Alembert, J. (1752). Essai d'une nouvelle theorie de la resistance des fluides. 
  9. Kirchhoff, G. (1869). Zur Theorie freier Flussigkeitsstrahlen. Journal fur die reine und angewandte Mathematik (70), 289-298. 
  10. Rayleigh, Lord (1876). On the Resistance of Fluids. Philosophical Magazine (5)2, 430-441. 
  11. Navier, C. L. M. H. (1823). Memoire sur les lois du mouvement des fluides. Memoires de l'Academie des Sciences (6), 389-416. 
  12. Stokes, G. (1845). On the Theories of the Internal Friction of Fluids in Motion. Transaction of the Cambridge Philosophical Society (8), 287-305. 
  13. Reynolds, O. (1883). An Experimental Investigation of the Circumstances which Determine whether the Motion of Water Shall Be Direct or Sinuous and of the Law of Resistance in Parallel Channels. Philosophical Transactions of the Royal Society of London A-174, 935-982. 
  14. Renard, C. (1889). Nouvelles experiences sur la resistance de l'air. L'Aeronaute (22) 73-81. 
  15. Chanute, Octave (1997). Progress in Flying Machines. Dover Publications. ISBN 0486299813. OCLC 37782926. 
  16. Lanchester, F. W. (1907). Aerodynamics. 
  17. Prandtl, L. (1919). Tragflügeltheorie. Göttinger Nachrichten, mathematischphysikalische Klasse, 451-477. 
  18. Ackeret, J. (1925). Luftkrafte auf Flugel, die mit der grosserer als Schallgeschwindigkeit bewegt werden. Zeitschrift fur Flugtechnik und Motorluftschiffahrt (16), 72-74. 
  19. Anderson, John D. (2007). Fundamentals of Aerodynamics (4th ed.). McGraw-Hill. ISBN 0071254080. OCLC 60589123. 
  20. ஆன்டர்சன், J.D., காற்றியக்கவியலின் அடிப்படைகள் , 4வது பதிப்பு., மெக்-கிரா ஹில், 2007.
  21. கிளான்சி, L.J.(1975), காற்றியக்கவியல் , பகுதி 3.3, பிட்மேன் பப்லிசிங் லிமிடெட், லண்டன்
  22. வைட், F.M., விஸ்கஸ் பிளூயிட் புளோ , மெக்-கிரா ஹில், 1974.
  23. Katz, Joseph (1991). Low-speed aerodynamics: From wing theory to panel methods. McGraw-Hill series in aeronautical and aerospace engineering. McGraw-Hill. ISBN 0070504466. OCLC 21593499. 

மேலும் படிக்க[தொகு]

பொது காற்றியக்கவியல்

குறையொலிவேகக் காற்றியக்கவியல்

ஒலியொத்தவேகக் காற்றியக்கவியல்

மீயொலிவேகக் காற்றியக்கவியல்

அதிமீயொலிவேகக் காற்றியக்கவியல்

காற்றியக்கவியல் வரலாறு

பொறியியல் தொடர்பான காற்றியக்கவியல்

நில வாகனங்கள்

இறக்கை-பொருத்தப்பட்ட விமானம்

உலங்குவானூர்திகள்

ஏவுகணைகள்

மாதிரி விமானம்

காற்றியக்கவியல் தொடர்பான கிளைகள்

காற்று வெப்ப இயக்கவியல்

காற்று மீள்மையியல்

  • Bisplinghoff, Raymond L.; Ashley, Holt; Halfman, Robert L. (1996). Aeroelasticity. Dover Publications. ISBN 0486691896. OCLC 34284560. 
  • Fung, Y. C. (2002). An Introduction to the Theory of Aeroelasticity (Phoenix ed.). Dover Publications. ISBN 0486495051. OCLC 55087733. 

எல்லைப் படலங்கள்

கொந்தளிப்பு

வெளிப்புற இணைப்புகள்[தொகு]

"http://ta.wikipedia.org/w/index.php?title=காற்றியக்கவியல்&oldid=1620510" இருந்து மீள்விக்கப்பட்டது