மையப்படுத்தப்பட்ட நவகோண எண்

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
Jump to navigation Jump to search
Centered nonagonal number.svg

கணிதத்தில் மையப்படுத்தப்பட்ட நவகோண எண் (centered nonagonal number) என்பது மையப்படுத்தப்பட்ட பலகோண எண்களில் ஒரு வகையாகும். தரப்பட்டப் புள்ளிகளில், ஒரு புள்ளியை மையப்படுத்தி மற்ற புள்ளிகளை அந்த மையப்புள்ளியைச் சுற்றி ஒரு ஒழுங்கு நவகோண வடிவின் அடுக்குகளாக அடுக்கப்பட்டால் அப்புள்ளிகளின் மொத்த எண்ணிக்கை ஒரு மையப்படுத்தப்பட்ட நவகோண எண்ணாகும். ஒரு அடுக்கிலுள்ள நவகோணத்தின் ஒரு பக்கத்திலுள்ள புள்ளிகள் அதற்கு முந்தைய அடுக்கின் நவகோணத்தின் ஒரு பக்கத்திலுள்ள புள்ளிகளைவிட எண்ணிக்கையில் ஒன்று அதிகமாக இருக்கும்.

n -ஆம் மையப்படுத்தப்பட்ட நவகோண எண் காணும் வாய்ப்பாடு:

இவ்வாய்ப்பாட்டைப் பின்வருமாறு மாற்றியமைக்கலாம்:

இதிலிருந்து n -ஆம் மையப்படுத்தப்பட்ட நவகோண எண், (n−1)-ஆம் முக்கோண எண்ணின் 9 மடங்கை விட ஒன்று அதிகமென அறியலாம்.

இதை விடவும் எளிய தொடர்பு முக்கோண எண்களுக்கும் மையப்படுத்தப்பட்ட நவகோண எண்களுக்குமிடையே உள்ளது. ஒவ்வொரு மூன்றாவது முக்கோண எண்ணும் ஒரு மையப்படுத்தப்பட்ட நவகோண எண்ணாக இருக்கும்.

முதல் மையப்படுத்தப்பட்ட நவகோண எண்கள் சில:

1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946,...(A060544)

பின்வரும் செவ்விய எண்கள் மையப்படுத்தப்பட்ட நவகோண எண்களாக இருப்பதைக் காணலாம்:

3 -வது மையப்படுத்தப்பட்ட நவகோண எண், 28 = 7 x 8/2;
11 -வது மையப்படுத்தப்பட்ட நவகோண எண், 496 = 31 x 32 / 2
43 -வது மையப்படுத்தப்பட்ட நவகோண எண், 8128 = 127 x 128 / 2
2731 -வது மையப்படுத்தப்பட்ட நவகோண எண்,
6 -ஐத் தவிர மற்ற அனைத்து இரட்டை செவ்விய எண்களும் கீழ்க்காணும் வாய்ப்பாட்டுடன் மையப்படுத்தப்பட்ட நவகோண எண்களாக இருக்கும்.
இதில் 2p-1, ஒரு மெர்சேன் பகா எண்.

1850 -ல் கணிதவியலாளர் பொல்லாக், ஒவ்வொரு இயல் எண்ணும் அதிகபட்சம் 11 மையப்படுத்தப்பட்ட நவகோண எண்களின் கூட்டுத்தொகையாக அமையும் என்று கூறியது (நிரூபணம் இல்லாமல்) சரியானது என்றோ அல்லது தவறானது என்றோ நிரூபிக்கப்படவேயில்லை.