மெய்யெண்: திருத்தங்களுக்கு இடையிலான வேறுபாடு

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
உள்ளடக்கம் நீக்கப்பட்டது உள்ளடக்கம் சேர்க்கப்பட்டது
வரிசை 21: வரிசை 21:
மேலும் மெய்யெண்களின் கணம் குறைந்தபட்ச மேல்வரம்புகொண்டதாக உள்ளது. அதாவது வெற்றற்ற மெய்யெண்களைக் கொண்ட ஒரு கணத்திற்கு மேல்வரம்பு இருக்குமானால், அக்கணத்திற்கு குறைந்தபட்ச மேல்வரம்பும் இருக்கும். இப்பண்பே மெய்யெண்களை விகிதமுறு எண்களிலிருந்து வேறுபடுத்திக் காட்டுகிறது.
மேலும் மெய்யெண்களின் கணம் குறைந்தபட்ச மேல்வரம்புகொண்டதாக உள்ளது. அதாவது வெற்றற்ற மெய்யெண்களைக் கொண்ட ஒரு கணத்திற்கு மேல்வரம்பு இருக்குமானால், அக்கணத்திற்கு குறைந்தபட்ச மேல்வரம்பும் இருக்கும். இப்பண்பே மெய்யெண்களை விகிதமுறு எண்களிலிருந்து வேறுபடுத்திக் காட்டுகிறது.


எடுத்துக்காட்டாக, விகிதமுறு எண்களில் 2 ஐவிடக் குறைவான வர்க்கம் கொண்ட எண்களின் கணத்தின் மேல்வரம்பு 1.5 ஆகும். ஆனால் இக்கணத்திற்கு குறைந்தபட்ச மேல்வரம்பாக அமையக்கூடிய விகிதமுறு எண் இல்லை.
எடுத்துக்காட்டாக, விகிதமுறு எண்களில் 2 ஐவிடக் குறைவான வர்க்கம் கொண்ட எண்களின் கணத்தின் மேல்வரம்பு 1.5 ஆகும். ஆனால் இக்கணத்திற்கு குறைந்தபட்ச மேல்வரம்பாக அமையக்கூடிய விகிதமுறு எண் இல்லை. அதாவது விகிதமுறு எண்கள் கணத்திற்கு குறைந்தபட்ச மேல்வரம்புப் பண்பு கிடையாது.

== குறியீடுகள் ==

மெய்யெண்களின் கணத்தைக் குறிப்பதற்குக் கணிதவியலாளர்கள், '''R''' அல்லது ℝ .என்ற குறியீட்டைப் பயன்படுத்துகின்றனர். நேர்ம மெய்யெண்களின் கணமும் எதிர்ம மெய்யெண்களின் கணமும் முறையே '''R'''<sup>+</sup>, '''R'''<sup>−</sup> எனக் குறிக்கப்படுகின்றன;<ref name=Schumacher96>{{harvnb|Schumacher|1996|loc=pp. 114-115}}</ref> இவை '''R'''<sub>+</sub>, '''R'''<sub>−</sub> என்றும் குறிக்கப்படுகின்றன.<ref name="nombres-reels-ens-paris">[[École Normale Supérieure]] of [[பாரிஸ்]], [http://culturemath.ens.fr/maths/pdf/logique/reels.pdf “{{lang|fr|Nombres réels}}” (“Real numbers”)], p. 6</ref> எதிர்மமற்ற மெய்யெண்களின் கணம் '''R'''<sub>≥0</sub> எனக் குறிக்கப்படலாமெனினும் இக்குறியீடு பெரும்பாலும் '''R'''<sup>+</sup> ∪ {0} என்ற கணத்தைக் குறிக்கும்.<ref name=Schumacher96 /> பிரெஞ்சு கணிதத்தில், ''நேர்ம மெய்யெண்கள்'' மற்றும் ''எதிர்ம மெய்யெண்கள்'' இரண்டிலும் [[0 (எண்)|0]] எண்ணும் உள்ளடங்கும்; மேலும் இவ்விரு கணங்களும் முறையே ℝ<sub>+</sub> and ℝ<sub>−</sub> என்ற குறியீடுகளால் குறிக்கப்படுகின்றன.<ref name="nombres-reels-ens-paris"/> இச்சூழலில், பூச்சியம் தவிர்த்த நேர்ம எண்களின் கணம் கண்டிப்பான நேர்ம மெய்யெண்களின் கணமென்றும், பூச்சியம் தவிர்த்த எதிர்ம மெய்யெண்களின் கணம் கண்டிப்பான எதிர்ம மெய்யெண்களின் கணம் என்றும் அழைக்கப்படுகின்றன; மேலும் இவற்றின் குறியீடுகள் முறையே ℝ<sub>+</sub>* மற்றும் ℝ<sub>−</sub>* ஆகும்.<ref name="nombres-reels-ens-paris"/>

'''R''' இன் ''n'' நகல்களின் [[கார்ட்டீசியன் பெருக்கற்பலன்]] '''R'''<sup>''n''</sup> எனக் குறிக்கப்படுகிறது., '''R'''<sup>''n''</sup> ஆனது மெய்யெண்களின் களத்தின் மீதான ''n''-பரிமாண [[திசையன் வெளி]]யாகும். இந்தத் திசையன் வெளியை, [[யூக்ளீட் வடிவியல்|யூக்ளிடிய வடிவவியலின்]] [[ஆள்கூற்று முறைமை]] கொண்ட ''n''-பரிமாண வெளியாக அடையாளப்படுத்தலாம். எடுத்துக்காட்டாக, '''R'''<sup>3</sup> இல் உள்ள மெய்யெண்கள் மூன்றும், முப்பரிமாண வெளியில் அமைந்த ஒரு [[புள்ளி]]யின் [[ஆள்கூற்று முறைமை|ஆய தொலைவுகளைக்]] குறிப்பனவையாக அமையும்.







15:01, 15 மே 2018 இல் நிலவும் திருத்தம்

மெய்யெண்ணுக்கான குறியீடு

மெய்யெண் (Real number) அல்லது உள்ளக எண் என்பது கணிதத்தில் தொடர்ச்சியான அளவிடையொன்றில் ஒரு அளவைக் குறிக்கும் பெறுமானமாகும். 17 ஆம் நூற்றாண்டின் கணிதவியலாளர் ரெனே டேக்கார்ட், பல்லுறுப்புக்கோவைகளின் மூலங்களை மெய் மூலங்கள் மற்றும் கற்பனை மூலங்கள் எனப் பாகுபடுத்திக் காட்டுவதற்காக "மெய்" என்ற உரிச்சொல்லை அறிமுகப்படுத்தினார்.

இயல் எண்கள், முழு எண்கள், விகிதமுறு எண்கள் விகிதமுறா எண்கள் ஆகிய அனைத்தும் மெய்யெண்களில் அடங்கும். விகிதமுறா எண் வகையைச் சேர்ந்த விஞ்சிய எண்கள்]], மற்றும் π (3.14159265...) ஆகியவையும் மெய்யெண்களே. மெய்யெண்களுக்குச் சில எடுத்துக்காட்டுகள்: -5, 4/3, 8.6, √2, π(3.1415926535...) என்பன மெய் எண்களாகும். தூரத்தைக் குறிப்பதற்கு மட்டுமல்லாது நேரம், திணிவு, ஆற்றல், திசைவேகம் போன்ற பல்வேறு கணியங்களைக் அளந்து குறிப்பதற்கும் மெய்யெண்கள் பயன்படுத்தப்படுகிறது.

ஒரு முடிவிலி நீளக் கோட்டிலுள்ள புள்ளிகளாக மெய்யெண்கள் காட்டப்பட்டுள்ளன.

மெய்யெண்கள் ஒரு முடிவிலி நீளக் கோட்டிலுள்ள புள்ளிகளாகக் கருதப்படலாம். இக்கோடு எண் கோடு அல்லது மெய்க்கோடு எனப்படும். இக்கோட்டில் முழு எண்களுக்கான புள்ளிகள் சம இடைவெளிகளாகப் பிரிக்கப்பட்டிருக்கும். சிக்கலெண்கள் கணத்தில் மெய்யெண்களும் அடங்கும். அதனால், மெய்யெண் கோட்டை சிக்கலெண் தளத்தின் ஒரு பகுதியாகக் கருதலாம்.

மெய்யெண்களின் கணம், எண்ணுறா முடிவிலி கணமாகும். அதாவது இயல் எண்களின் கணம், மெய்எண்களின் கணம் இரண்டுமே முடிவிலா கணங்களாக இருந்தாலும் இரண்டுக்கும் இடையே (மெய்யெண் கணத்திலிருந்து இயலெண் கணத்திற்கு உள்ளிடுகோப்பு இல்லை; மெய்யெண்கள் கணத்தின் எண்ணளவையானது (குறியீடு: , இயலெண் கணத்தின் எண்ணளவையை (குறியீடு: ) விட மிகப்பெரியதாகும்.


பண்புகள்

அடிப்படை இயல்புகள்

ஒரு மெய்யெண்ணானது விகிதமுறு எண்கள், விகிதமுறா எண்கள், இயற்கணித எண்கள், விஞ்சிய எண்கள் ஆகியவையாக இருக்கலாம்; ஒரு நேர்ம அல்லது எதிர்ம எண்ணாக அல்லது 0 ஆக இருக்கலாம். தொடர்ச்சியான கணியங்களை அளப்பதற்கு மெய்யெண்கள் பயன்படுத்தப்படுகிறது. மெய்யெண்களை தசம வடிவிலும் எழுதலாம் (324.823122147...).

மெய்யெண்கள் கணமானது வரிசைப்படுத்தப்பட்ட களமாக உள்ளது. அதாவது கூட்டல், பெருக்கல், பூச்சியமற்ற எண்களால் வகுத்தல் ஆகிய செயல்களைக் கொண்ட களமாகும்.

மேலும் மெய்யெண்களின் கணம் குறைந்தபட்ச மேல்வரம்புகொண்டதாக உள்ளது. அதாவது வெற்றற்ற மெய்யெண்களைக் கொண்ட ஒரு கணத்திற்கு மேல்வரம்பு இருக்குமானால், அக்கணத்திற்கு குறைந்தபட்ச மேல்வரம்பும் இருக்கும். இப்பண்பே மெய்யெண்களை விகிதமுறு எண்களிலிருந்து வேறுபடுத்திக் காட்டுகிறது.

எடுத்துக்காட்டாக, விகிதமுறு எண்களில் 2 ஐவிடக் குறைவான வர்க்கம் கொண்ட எண்களின் கணத்தின் மேல்வரம்பு 1.5 ஆகும். ஆனால் இக்கணத்திற்கு குறைந்தபட்ச மேல்வரம்பாக அமையக்கூடிய விகிதமுறு எண் இல்லை. அதாவது விகிதமுறு எண்கள் கணத்திற்கு குறைந்தபட்ச மேல்வரம்புப் பண்பு கிடையாது.

குறியீடுகள்

மெய்யெண்களின் கணத்தைக் குறிப்பதற்குக் கணிதவியலாளர்கள், R அல்லது ℝ .என்ற குறியீட்டைப் பயன்படுத்துகின்றனர். நேர்ம மெய்யெண்களின் கணமும் எதிர்ம மெய்யெண்களின் கணமும் முறையே R+, R எனக் குறிக்கப்படுகின்றன;[1] இவை R+, R என்றும் குறிக்கப்படுகின்றன.[2] எதிர்மமற்ற மெய்யெண்களின் கணம் R≥0 எனக் குறிக்கப்படலாமெனினும் இக்குறியீடு பெரும்பாலும் R+ ∪ {0} என்ற கணத்தைக் குறிக்கும்.[1] பிரெஞ்சு கணிதத்தில், நேர்ம மெய்யெண்கள் மற்றும் எதிர்ம மெய்யெண்கள் இரண்டிலும் 0 எண்ணும் உள்ளடங்கும்; மேலும் இவ்விரு கணங்களும் முறையே ℝ+ and ℝ என்ற குறியீடுகளால் குறிக்கப்படுகின்றன.[2] இச்சூழலில், பூச்சியம் தவிர்த்த நேர்ம எண்களின் கணம் கண்டிப்பான நேர்ம மெய்யெண்களின் கணமென்றும், பூச்சியம் தவிர்த்த எதிர்ம மெய்யெண்களின் கணம் கண்டிப்பான எதிர்ம மெய்யெண்களின் கணம் என்றும் அழைக்கப்படுகின்றன; மேலும் இவற்றின் குறியீடுகள் முறையே ℝ+* மற்றும் ℝ* ஆகும்.[2]

R இன் n நகல்களின் கார்ட்டீசியன் பெருக்கற்பலன் Rn எனக் குறிக்கப்படுகிறது., Rn ஆனது மெய்யெண்களின் களத்தின் மீதான n-பரிமாண திசையன் வெளியாகும். இந்தத் திசையன் வெளியை, யூக்ளிடிய வடிவவியலின் ஆள்கூற்று முறைமை கொண்ட n-பரிமாண வெளியாக அடையாளப்படுத்தலாம். எடுத்துக்காட்டாக, R3 இல் உள்ள மெய்யெண்கள் மூன்றும், முப்பரிமாண வெளியில் அமைந்த ஒரு புள்ளியின் ஆய தொலைவுகளைக் குறிப்பனவையாக அமையும்.

  1. 1.0 1.1 Schumacher 1996, pp. 114-115
  2. 2.0 2.1 2.2 École Normale Supérieure of பாரிஸ், Nombres réels” (“Real numbers”), p. 6
"https://ta.wikipedia.org/w/index.php?title=மெய்யெண்&oldid=2524410" இலிருந்து மீள்விக்கப்பட்டது