கற்பனை எண்

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
Jump to navigation Jump to search
... (நீலப் பகுதியிலிருந்து ஒரேமாதிரியாக மீள்கிறது)
i−3 = i
i−2 = −1
i−1 = −i
i0 = 1
i1 = i
i2 = −1
i3 = −i
i4 = 1
i5 = i
i6 = −1
in = in(mod 4)


கணிதவியலில் கற்பனை எண் (இந்த ஒலிக்கோப்பு பற்றி ஒலிப்பு) (Imaginary Number) என்பது சிக்கலெண்ணின் ஒரு பகுதி. இது கற்பனை அலகு i ஆல் பெருக்கப்பட்ட மெய்யெண்ணாக எழுதக்கூடியதாகும்.[note 1] கற்பனை அலகு i இன் முக்கியமான பண்பு i2 = −1 ஆகும்.[1]. கற்பனை எண் bi இன் வர்க்கம் b2. எடுத்துக்காட்டாக, 5i ஒரு கற்பனை எண்; இதன் வர்க்கம் −25. 0 மெய்யெண் மற்றும் கற்பனை எண் இரண்டுமாகக் கொள்ளப்படுகிறது.[2]

கற்பனை எண்ணை ரஃவீல் பாம்பெல்லி (Rafael Bombelli) என்பார் 1572ல் வரையறை செய்தார். அக்காலத்தில் இவ்வகை எண்கள் உள்ளன என்பதை யாரும் நம்பவில்லை. கணிதவியலில் சுழி (0) என்பதை எப்படி உணர்ந்து கொள்ளவில்லையோ அப்படியே இந்த கற்பனை எண்ணும் எளிதாக எற்றுக்கொள்ளப்படவில்லை. புகழ் பெற்ற கணித அறிவியலாளரான டேக்கார்ட் போன்றவர்களும் ஏற்றுக்கொள்ளவில்லை. 17 ஆம் நூற்றாண்டில் கண்டுபிடிக்கப்பட்டு பல கணிதவியலாளர்களாலும் பயனற்றதாகக் கருத்தப்பட்ட இந்தக் கருத்துரு, லியோனார்டு ஆய்லர் மற்றும் கார்ல் பிரீடிரிக் காஸ் இருவரின் பங்களிப்புகளைத் தொடர்ந்து பரவலாக ஏற்றுக்கொள்ளப்பட்டது.

bi என்ற கற்பனை எண்ணை a என்ற மெய்யெண்ணுடன் சேர்த்து a + bi என்ற சிக்கலெண் உருவாக்கப்படுகிறது. இச்சிக்கலெண்ணுக்கு a மெய்ப்பகுதி என்றும், b கற்பனைப்பகுதி என்றும் அழைக்கப்படுகின்றன.[3][note 2] கற்பனை எண்ணைச் முழுவதுமாகக் கற்பனை எண் என்றும், பூச்சியமற்ற கற்பனைப்பகுதி கொண்ட சிக்கலெண்களைக் கற்பனை எண்கள் என்றும் சில நூலாசிரியர்கள் குறிப்பிடுகின்றனர்.[4]

வரையறை[தொகு]

எந்த ஒரு சிக்கலெண்ணையும் , என எழுதலாம். இதில் யும் யும் மெய்யெண்கள். என்பது கீழ்க்காணும் பண்பு உள்ள கற்பனை அலகு:

என்பது மெய்ப்பகுதி, என்பது கற்பனைப்பகுதி.

வரலாறு[தொகு]

சிக்கலெண் தளத்தின் படவிளக்கம். கற்பனை எண்கள் செங்குத்து அச்சில் குறிக்கப்படுகின்றன.

கிரேக்கக் கணிதவியலாளரும் பொறியியல் வல்லுநருமான அலெக்சாண்டிரியாவின் ஏரோன் என்பவர்தான் முதன்முதலாக கற்பனை எண்களைக் கண்டுபிடித்தாலும்,[5][6] கணிதவியாலாளர் ரஃவீல் பாம்பெல்லி என்பவரே 1572 இல் சிக்கலெண்களின் பெருக்கல் விதிகளை வரையறுத்தவராவார். இக்கருத்துருக்கள் முன்னதாக கார்டானோவின் படைப்புகள் போன்ற அச்சுப்பதிப்புகளில் இடம்பெற்றன. ஒருகாலத்தில் பூச்சியத்தின் சிறப்பினை எவரும் உணராது இருந்தவாறு, கற்பனை எண்களும் பயனற்றவையாக ரெனே டேக்கார்ட் உட்பட்டப் பல அறிஞர்களால் கருதப்பட்டது. [7][8] லியோனார்டு ஆய்லர் (1707–1783) மற்றும் கார்ல் பிரீடிரிக் காஸ் (1777–1855) இருவரின் பங்களிப்புகள் வரை கற்பனை எண்களின் பயன்பாடு பரவலாக ஏற்றுக்கொள்ளப்படவில்லை. சிக்கலெண் தளத்தில் அமைந்த புள்ளிகளாகச் சிக்கலெண்களின் வடிவவியல் முக்கியத்துவத்துவத்தை, முதன்முதலில் கணிதவியலாளர் காசுப்பர் வெஸ்சல் (1745–1818) விளக்கினார்.[9]

வடிவவியல் விளக்கம்[தொகு]

சிக்கலெண் தளத்தில் 90-பாகை சுழற்சிகள்

வடிவவியல் வரைபடங்களில், சிக்கலெண் தளத்தின் செங்குத்து அச்சில் கற்பனை எண்கள் கணப்படுகின்றன. இதனால் சிக்கலெண் தளத்தின் மெய்யச்சிற்கு செங்குத்தாக அவை அமைகின்றன. வலப்புறத்தில் எண்ணளவில் நேர்மமாக அதிகரிப்பதும், இடப்புறத்தில் எதிர்மமாக அதிகரிப்பதுமான எண் கோடு மெய் அச்சு; இந்த மெய்யச்சின் மீது (x-அச்சு) 0 இல், நேர்மமாக மேற்புறமாக அதிகரிப்பதாகவும், எதிர்மமாக கீழ்ப்புறமாகவும் கொண்ட செங்குத்து அச்சு (y-அச்சு) கற்பனை எண்கள் குறிக்கப்படும் கற்பனை அச்சு. இக்கற்பனை அச்சின் குறியீடு: i, , அல்லது .

இவ்வகையான உருவகிப்பில்,

 –1 ஆல் ஒரு சிக்கலெண்ணைப் பெருக்குவது, ஆதியைப் பொறுத்த 180 பாகைகள் சுழற்சிக்கு ஒத்தது;
 i ஆல் ஒரு சிக்கலெண்ணைப் பெருக்குவது, ஆதியைப் பொறுத்து 90 பாகைகள் எதிர்க்கடிகாரத்திசைச் சுழற்சிக்கு ஒத்தது;
சமன்பாடு i2 = −1 என்பது, ஆதியைப் பொறுத்து இரு 90-பாகை சுழற்சிகளாகக் கொள்ளப்படுகிறது. அவ்விரு சுழற்சிகளின் இறுதி விளைவு, ஒரு 180-பாகை சுழற்சியாக அமையும்.

மேற்கோள்கள்[தொகு]

  1. Uno Ingard, K. (1988). "Chapter 2". Fundamentals of waves & oscillations. Cambridge University Press. பக். 38. ISBN 0-521-33957-X. https://books.google.com/books?id=SGVfGIewvxkC&pg=PA38. 
  2. Sinha, K.C.. A Text Book of Mathematics XI. Rastogi Publications. பக். 11.2. ISBN 8171339123. https://books.google.com/books?id=mqdzqbPYiAUC&pg=SA11-PA2. 
  3. Aufmann, Richard; Barker, Vernon C.; Nation, Richard (2009). College Algebra: Enhanced Edition (6th ). Cengage Learning. பக். 66. ISBN 1-4390-4379-5. https://books.google.com/books?id=fjRa8Koq-RgC&pg=PA66. 
  4. C.L. Johnston, J. Lazaris, Plane Trigonometry: A New Approach, Prentice Hall, 1991, p. 247.
  5. Hargittai, István (1992). Fivefold symmetry (2nd ). World Scientific. பக். 153. ISBN 981-02-0600-3. https://books.google.com/books?id=-Tt37ajV5ZgC&pg=PA153. 
  6. Roy, Stephen Campbell (2007). Complex numbers: lattice simulation and zeta function applications. Horwood. பக். 1. ISBN 1-904275-25-7. https://books.google.com/books?id=J-2BRbFa5IkC. 
  7. Descartes, René, Discourse de la Méthode … (Leiden, (Netherlands): Jan Maire, 1637), appended book: La Géométrie, book three, p. 380. From page 380: "Au reste tant les vrayes racines que les fausses ne sont pas tousjours reelles; mais quelquefois seulement imaginaires; c'est a dire qu'on peut bien tousjours en imaginer autant que jay dit en chasque Equation; mais qu'il n'y a quelquefois aucune quantité, qui corresponde a celles qu'on imagine, comme encore qu'on en puisse imaginer trois en celle cy, x3 – 6xx + 13x – 10 = 0, il n'y en a toutefois qu'une reelle, qui est 2, & pour les deux autres, quoy qu'on les augmente, ou diminue, ou multiplie en la façon que je viens d'expliquer, on ne sçauroit les rendre autres qu'imaginaires." (Moreover, the true roots as well as the false [roots] are not always real; but sometimes only imaginary [quantities]; that is to say, one can always imagine as many of them in each equation as I said; but there is sometimes no quantity that corresponds to what one imagines, just as although one can imagine three of them in this [equation], x3 – 6xx + 13x – 10 = 0, only one of them however is real, which is 2, and regarding the other two, although one increase, or decrease, or multiply them in the manner that I just explained, one would not be able to make them other than imaginary [quantities].)
  8. Martinez, Albert A. (2006), Negative Math: How Mathematical Rules Can Be Positively Bent, Princeton: Princeton University Press, ISBN 0-691-12309-8 , discusses ambiguities of meaning in imaginary expressions in historical context.
  9. Rozenfeld, Boris Abramovich (1988). "Chapter 10". A history of non-euclidean geometry: evolution of the concept of a geometric space. Springer. பக். 382. ISBN 0-387-96458-4. https://books.google.com/books?id=DRLpAFZM7uwC&pg=PA382. 

குறிப்புகள்[தொகு]

  1. j is usually used in Engineering contexts where i has other meanings (such as electrical current)
  2. Both the real part and the imaginary part are defined as real numbers.

ஆதார நூல்கள்[தொகு]

  • Nahin, Paul (1998). An Imaginary Tale: the Story of the Square Root of −1. Princeton: Princeton University Press. ISBN 0-691-02795-1. , explains many applications of imaginary expressions.

வெளியிணைப்புகள்[தொகு]

"https://ta.wikipedia.org/w/index.php?title=கற்பனை_எண்&oldid=2553941" இருந்து மீள்விக்கப்பட்டது