பல்லுறுப்புக்கோவை
கணிதத்தில் ஒரு பல்லுறுப்புக்கோவை (polynomial) என்பது மாறிகள், மாறிலிகள் மற்றும் எண்கெழுக்களைக் கூட்டல், கழித்தல், பெருக்கல் மற்றும் எதிரெண்ணில்லா முழு எண் அடுக்கேற்றம் ஆகிய கணிதச் செயல்களால் குறிஇணைக்கப்பட்ட முடிவுறு எண்ணிக்கையிலான உறுப்புகளைக் கொண்டதொரு கோவையாகும். எடுத்துக்காட்டாக, x2 − x/4 + 7 என்பது ஒரு பல்லுறுப்புக்கோவை, ஆனால் x2 − 4/x + 7x3/2 ஒரு பல்லுறுப்புக்கோவை அல்ல. ஏனென்றால் அதன் இரண்டாவது உறுப்பில் மாறியால் வகுத்தலும் மூன்றாவது உறுப்பில் பின்ன எண் அடுக்கும் வருகின்றன.
பல எனப் பொருள்தரும் கிரேக்க மொழிச் சொல்லான poly மற்றும் இடைக்கால இலத்தீன் மொழிச் சொல்லான binomium ("binomial") ஆகியவற்றிலிருந்து உருவானது பல்லுறுப்புக்கோவையின் ஆங்கிலச் சொல் polynomial.[1][2][3] லத்தீன் மொழியில் இச்சொல் பிரெஞ்சுக் கணிதவியலாளர் பிரான்சிஸ்கா வியேடாவால் (Franciscus Vieta) அறிமுகப்படுத்தப்பட்டது.[4] பல்லுறுப்புக்கோவைகள், பல்லுறுக்கோவைச் சமன்பாடுகளாகவும் பல்லுறுப்புக்கோவைச் சார்புகளாகவும் கணிதத்திலும் அறிவியலிலும் பயன்படுகின்றன.
கண்ணோட்டம்
[தொகு]ஒரு பல்லுறுப்புக்கோவை பூச்சியமாகவோ அல்லது ஒன்றுக்கு மேற்பட்ட பூச்சியமற்ற உறுப்புகளின் கூடுதலாகவோ இருக்கலாம். பல்லுறுப்புக்கோவையிலுள்ள உறுப்புகளின் எண்ணிக்கை முடிவுறு எண்ணாகவே இருக்கும். ஒவ்வொரு உறுப்பும் மாறிலி எனப்படும் எண்ணால் பெருக்கப்பட்ட மாறிகளைக் (மதிப்பு தீர்மானிக்க முடியாதவை]])[5] கொண்டிருக்கும். ஒரு உறுப்பிலுள்ள மாறிகளின் எண்ணிக்கையும் முடிவுறு எண்ணாகவே இருக்கும். ஒரு உறுப்பிலுள்ள ஒவ்வொரு மாறியும் ஒரு இயல் எண் அடுக்கினைக் கொண்டிருக்கும். மாறியின் அடுக்கு, அந்த மாறியின் படி எனவும் ஒரு உறுப்பின் படி அதிலுள்ள அனைத்து மாறிகளின் படிகளின் கூடுதலாகவும், கோவையின் படி அக்கோவையிலுள்ள உறுப்புகளிலேயே மிகப்பெரிய படி கொண்ட உறுப்பின் படியாகவும் கொள்ளப்படுகிறது. x = x1, என்பதால் அடுக்கு எழுதப்படாமல் உள்ள மாறியின் படி 1. மாறிகளே இல்லாமலுள்ள உறுப்பு மாறிலி அல்லது மாறிலி உறுப்பு எனப்படும். பூச்சியமற்ற மாறிலி உறுப்பின் படி 0. ஒரு உறுப்பில் மாறியைப் பெருக்கினதாக அமைந்த எண் (மாறிலி) அந்த உறுப்பின் கெழு என அழைக்கப்படும். ஒரு பல்லுறுப்புக்கோவையின் உறுப்புகளின் கெழுக்கள் ஒரு குறிப்பிட்ட எண் கணத்தைச் சேர்ந்தவையாக இருக்கலாம். மெய்யெண்களைக் கெழுக்களாகக் கொண்ட பல்லுறுப்புக்கோவை, மெய்யெண்கள் மீதான பல்லுறுப்புக்கோவை எனப்படும். முழு எண் கெழுக்கள் கொண்ட பல்லுறுப்புக்கோவைகளும் கலப்பெண் கெழுக்கள் கொண்ட பல்லுறுப்புக்கோவைகளும் உள்ளன.
எடுத்துக்காட்டு:
- என்பது ஒரு உறுப்பு.
- கெழு: –5,
- மாறிகள்: x , y,
- மாறி x -ன் படி 2; மாறி y -ன் படி 1.
- இவ்வுறுப்பின் படி: 2 + 1 = 3.
இதேபோன்ற உறுப்புகள் பல சேர்ந்ததே ஒரு பல்லுறுப்புக்கோவை.
எடுத்துக்காட்டு:
இப்பல்லுறுப்புக்கோவையில் மூன்று உறுப்புகள் உள்ளன.
- பல்லுறுப்புக்கோவையின் படி
முதல் உறுப்பின் படி 2; இரண்டாம் உறுப்பின் படி 1; மூன்றாம் உறுப்பின் படி 0. எனவே இப் பல்லுறுப்புக்கோவையின் படி 2.
- கெழு
முதல் உறுப்பின் கெழு 3; இரண்டாம் உறுப்பின் கெழு is –5; மூன்றாம் உறுப்பு மாறிலி உறுப்பு.
கூட்டலின் பரிமாற்றுப் பண்பின்படி ஒரு பல்லுறுப்புக்கோவையின் உறுப்புகளை நமக்குத் தேவையான வரிசைப்படி எழுத முடியும். ஒரு மாறியில் அமைந்த பல்லுறுப்புக்கோவையின் உறுப்புகள் அவ்வுறுப்புகளின் படிகளின் ஏறு வரிசை அல்லது இறங்கு வரிசையில் எழுதப்படுகின்றன. மேலே தரப்பட்டுள்ள பல்லுறுப்புக்கோவை, மாறி x -ன் படிகளின் இறங்கு வரிசையில் எழுதப்பட்டுள்ளது.
ஒத்த உறுப்புகள்
[தொகு]ஒரே மாறிகளில் சமமான அடுக்குகளை உடைய உறுப்புகள் ஒத்த உறுப்புகள் எனப்படும். இரண்டு ஒத்த உறுப்புகளைப் பங்கீட்டு விதியைப் பயன்படுத்தி ஒரே உறுப்பாகச் சுருக்க முடியும். புது உறுப்பின் கெழு பழைய இரு உறுப்புகளின் கூட்டலாக அமையும்.
எடுத்துக்காட்டு:
- :.....
கூட்டல்
[தொகு]இரு பல்லுறுப்புக்கோவைகளைக் கூட்டலும் ஒரு பல்லுறுப்புக்கோவையாகவே இருக்கும். கூட்டலின் போது அவற்றிலுள்ள ஒத்த உறுப்புக்கள் பங்கீட்டுப் பண்பின் படி ஒரே உறுப்பாகச் சுருக்கப்படுகின்றன. ஏனைய உறுப்புகள் உள்ளபடியே இணைக்கப்படுகின்றன.
- என்ற இரு பல்லுறுப்புக்கோவைகளின் கூட்டல்:
பெருக்கல்
[தொகு]இரு பல்லுறுப்புக்கோவைகளின் பெருக்கற்பலன் ஒரு பல்லுறுப்புக்கோவையாக அமையும்.
மாற்று வடிவங்கள்
[தொகு]- பொதுவாக கூட்டல், கழித்தல், பெருக்கல் மற்றும் மாறிலிகளின் எதிரெண்ணிலா முழு எண் அடுக்கேற்றம் ஆகிய செயல்களை மட்டும் கொண்டு மாறிகள், மாறிலிகள் இணைக்கப்பட்டதொரு கோவை ஒரு பல்லுறுப்புக்கோவையாகும். அத்தகைய கோவையை, உறுப்புகளின் கூடுதலாக எழுதலாம்.
எடுத்துக்காட்டாக, (x + 1)3 ஒரு பல்லுறுப்புக்கோவை; இதன் திட்ட வடிவம்: x3 + 3x2 + 3x + 1.
- ஒரு பல்லுறுப்புக்கோவையை மற்றொரு பல்லுறுப்புக்கோவையால் வகுக்கக் கிடைப்பது பல்லுறுப்புக்கோவை அல்ல. இந்த வகுத்தலால் ஒரு ஈவும் மீதியும் கிடைக்கின்றன.[6] தொகுதியும் பகுதியும் பல்லுறுப்புக்கோவைகளாக அமைந்துள்ளவை விகிதமுறு கோவைகள் என அழைக்கப்படுகின்றன. ஆனால் அவை பல்லுறுப்புக்கோவைகள் அல்ல.
எனினும் ஒரு பூச்சியமற்ற எண்ணால் ஒரு பல்லுறுப்புக்கோவை வகுக்கப்படும்போது கிடைப்பது ஒரு பல்லுறுப்புக்கோவையே.
எடுத்துக்காட்டு:
இதனை என எழுதலாம் என்பதாலும் ஒரு மாறிலி என்பதாலும் எடுத்துக்காட்டாகத் தரப்பட்ட கோவையை ஒரு பல்லுறுப்புக்கோவையின் உறுப்பாகவோ அல்லது பல்லுறுப்புக்கோவையாகவோ கருதலாம். ஒரு உறுப்பாகக் கருதும்போது அவ்வுறுப்பின் கெழு .
- ; என்ற கோவையில் இரு உறுப்புகள் உள்ளதுபோலத் தோன்றினாலும் அது ஒரேயொரு உறுப்புத்தான். ஏனென்றால் 2 + 3i என்பது முழுமையாக ஒரு கலப்பெண்ணையே குறிக்கும்.
- என்பது பல்லுறுப்புக்கோவையாலான வகுத்தலைக் கொண்டுள்ளதால் பல்லுறுப்புக்கோவையல்ல, ஒரு விகிதமுறு கோவை.
- என்பதன் அடுக்கில் மாறி உள்ளமையால் இதுவும் ஒரு பல்லுறுப்புக்கோவை ஆகாது.
- கழித்தலை எதிரெண் கூட்டலாகவும் இயல் எண்களில் அடுக்கேற்றத்தை மீள்பெருக்கலாகவும் கருதலாம் என்பதால் கூட்டல் மற்றும் பெருக்கல் ஆகிய இரு செயல்களை மட்டுமே கொண்டு மாறிகள் மற்றும் மாறிலிகளை இணைத்து ஒரு பல்லுறுப்புக்கோவையை உருவாக்க முடியும்.
பல்லுறுப்புக்கோவைச் சார்புகள்
[தொகு]பல்லுறுப்புக்கோவையின் மதிப்பைக் கணிப்பதன் மூலம் அப்பல்லுறுப்புக்கோவையை ஒரு சார்பாகக் கருதலாம். ஒருமாறி கொண்ட சார்பு ƒ பின்வரும் கூற்றை நிறைவு செய்தால் அது ஒரு பல்லுறுப்புக்கோவைச் சார்பு எனப்படும்.
- x - ஏதேனும் ஒரு மாறி;
- n -ஒரு எதிரெண்ணில்லா முழு எண்;
- a0, a1,a2, …, an -மாறிலி எண்கெழுக்கள்.
எடுத்துக்காட்டு:
- எனில்:
- ஒருமாறியில் அமைந்த பல்லுறுப்புக்கோவைச் சார்பு:
- இருமாறிகளில் அமைந்த பல்லுறுப்புகோவைச் சார்பு:
பல்லுறுப்புக்கோவைச் சமன்பாடுகள்
[தொகு]ஒரு பல்லுறுப்புக்கோவைச் சமன்பாட்டில் இரு பல்லுறுப்புக்கோவைகள் சமப்படுத்தப்படுகின்றன. இச்சமன்பாடுகள் இயற்கணிதச் சமன்பாடுகள் எனவும் அழைக்கப்படுகின்றன.
எடுத்துக்காட்டு:
- இது ஒரு பல்லுறுப்புக்கோவைச் சமன்பாடு.
ஒருமாறியில் அமைந்த பல்லுறுப்புக்கோவைச் சமன்பாட்டின் இருபுறமுமுள்ள பல்லுறுப்புக்கோவைகள் இரண்டையும் ஒருங்கே நிறைவு செய்யும் மாறியின் மதிப்புகள் அச்சமன்பாட்டின் தீர்வுகள் எனவும் அம்மதிப்புகளைக் காணும் முறை சமன்பாட்டின் தீர்வு காணல் எனவும் அழைக்கப்படுகின்றன. ஒரு சமன்பாட்டிற்கு ஒன்றுக்கு மேற்பட்ட தீர்வுகள் இருக்கலாம்.
அடிப்படைப் பண்புகள்
[தொகு]- இரு பல்லுறுப்புக்கோவைகளின் கூடுதல் ஒரு பல்லுறுப்புக்கோவை.
- இரு பல்லுறுப்புக்கோவைகளின் பெருக்கற்பலன் ஒரு பல்லுறுப்புக்கோவை.
- இரு பல்லுறுப்புக்கோவைச் சார்புகளின் தொகுப்பு ஒரு பல்லுறுப்புக்கோவை. முதல் பல்லுறுப்புக்கோவையின் மாறிக்குப் பதில் இரண்டாவது பல்லுறுப்புக்கோவையைப் பிரதியிடுவதன் மூலம் இப்புது பல்லுறுப்புக்கோவை கிடைக்கிறது.
- anxn + an-1xn-1 + … + a2x2 + a1x + a0 என்ற பல்லுறுப்புக்கோவையின் வகைக்கெழு:
- nanxn-1 + (n-1)an-1xn-2 + … + 2a2x + a1.
வரைபடங்கள்
[தொகு]ஒருமாறியில் அமைந்த பல்லுறுப்புக்கோவைகளை வரைபடங்கள் மூலமாகக் குறிக்கலாம்.
- பூச்சியப் பல்லுறுப்புக்கோவை:
- f(x) = 0 -ன் வரைபடம் x -அச்சு.
- பல்லுறுப்புக்கோவையின் படி 0 :
- f(x) = a0 (a0 ≠ 0) -ன் வரைபடம் ஒரு கிடைக்கோடு. அக்கோட்டின் y-வெட்டுத்துண்டு a0
- பல்லுறுப்புக்கோவையின் படி 1 (நேரியல் சார்பு):
- f(x) = a0 + a1x (a1 ≠ 0) -ன் வரைபடம் ஒரு சாய்ந்த கோடு. இக்கோட்டின் y-வெட்டுத்துண்டு a0 மற்றும் சாய்வு a1.
- பல்லுறுப்புக்கோவையின் படி 2 :
- f(x) = a0 + a1x + a2x2 (a2 ≠ 0) -ன் வரைபடம் ஒரு பரவளையம்.
- பல்லுறுப்புக்கோவையின் படி 3 :
- f(x) = a0 + a1x + a2x2, + a3x3 (a3 ≠ 0) -ன் வரைபடம் ஒரு முப்படி வளைவரை.
- பல்லுறுப்புக்கோவையின் படி 2 அல்லது 2 க்கும் மேற்பட்டது:
- f(x) = a0 + a1x + a2x2 + … + anxn (an ≠ 0 மற்றும் n ≥ 2) -ன் வரைபடம் ஒரு தொடர்ச்சியான, நேரியல் அல்லாத வளைவரை.
கீழே பல்லுறுப்புக்கோவைச் சார்புகளின் வரைபடங்களின் சில எடுத்துக்காட்டுகள் தரப்பட்டுள்ளன:
-
பல்லுறுப்புக்கோவையின் படி 2:
f(x) = x2 – x – 2 = (x+1)(x-2) -
பல்லுறுப்புக்கோவையின் படி 3:
f(x) = x3/4 + 3x2/4 – 3x/2 – 2 = 1/4 (x+4)(x+1)(x-2) -
பல்லுறுப்புக்கோவையின் படி 4:
f(x) = 1/14 (x+4)(x+1)(x-1)(x-3) + 0.5 -
பல்லுறுப்புக்கோவையின் படி 5:
f(x) = 1/20 (x+4)(x+2)(x+1)(x-1)(x-3) + 2 -
பல்லுறுப்புக்கோவையின் படி 6:
f(x) = 1/30 (x+3.5)(x+2)(x+1)(x-1)(x-3)(x-4) + 2 -
பல்லுறுப்புக்கோவையின் படி 7:
f(x) = (x-3)(x-2)(x-1)(x)(x+1)(x+2)(x+3)
மேற்கோள்கள்
[தொகு]- ↑ CNTRL (French National Center for Textual and Lexical Resources), etymology of binôme [1]
- ↑ Etymology of "polynomial" Compact Oxford English Dictionary
- ↑ Online Etymology Dictionary "binomial"
- ↑ Florian Cajori (1991). A History of Mathematics. AMS. பன்னாட்டுத் தரப்புத்தக எண் 978-0-8218-2102-2.|[2]
- ↑ The term indeterminate is more proper, and, in theory, variable should be used only when considering the function defined by the polynomial. In practice, most authors use indifferently the two words.
- ↑ Peter H. Selby, Steve Slavin, Practical Algebra: A Self-Teaching Guide, 2nd Edition, Wiley, பன்னாட்டுத் தரப்புத்தக எண் 0-471-53012-3 பன்னாட்டுத் தரப்புத்தக எண் 978-0-471-53012-1
உசாத்துணை
[தொகு]- R. Birkeland. Über die Auflösung algebraischer Gleichungen durch hypergeometrische Funktionen[தொடர்பிழந்த இணைப்பு]. Mathematische Zeitschrift vol. 26, (1927) pp. 565–578. Shows that the roots of any polynomial may be written in terms of multivariate hypergeometric functions.
- F. von Lindemann. Über die Auflösung der algebraischen Gleichungen durch transcendente Functionen[தொடர்பிழந்த இணைப்பு]. Nachrichten von der Königl. Gesellschaft der Wissenschaften, vol. 7, 1884. Polynomial solutions in terms of theta functions.
- F. von Lindemann. Über die Auflösung der algebraischen Gleichungen durch transcendente Functionen II. Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen, 1892 edition.
- K. Mayr. Über die Auflösung algebraischer Gleichungssysteme durch hypergeometrische Funktionen. Monatshefte für Mathematik und Physik vol. 45, (1937) pp. 280–313.
- H. Umemura. Solution of algebraic equations in terms of theta constants. In D. Mumford, Tata Lectures on Theta II, Progress in Mathematics 43, Birkhäuser, Boston, 1984.