அணுக்கரு உலை

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
(அணு உலை இலிருந்து வழிமாற்றப்பட்டது)
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்
சுவிட்சர்லாந்தில் "குரோக்கஸ்" என்ற சிறு அணுக்கரு உலை

அணுக்கரு உலை (Nuclear reactor) அணு உலை என்பது அணுக்கரு தொடர்வினையைத் தொடங்கி முழுமையான கட்டுப்பாட்டோடு நிகழ்த்தும் ஓர் அமைப்பாகும். இதற்கு எதிர்மாறாக அணுகுண்டு ஒன்றில் கட்டுப்பாடற்ற முறையில் மிகக்குறைந்த நேரத்தில் அணுக்கருத் தொடர்வினை ஏற்படுவதால் வெடிப்பு ஏற்படுகிறது.

அணுக்கரு உலைகள் மின்னாற்றலை உருவாக்க பேரளவில் பயன்படுத்தப்படுகின்றன. அணுக்கரு உலையில் இருந்து வெளியேறும் ஆற்றல் வெப்ப வடிவில் வெளிவருகின்றது. அணுக்கரு உலையில் வெளிவரும் வெப்ப ஆற்றல் உண்டாக்கும் நீராவி நீராவிச்சுழலிகளை இயக்குகிறது. இவை கப்பல்களை இயக்கவும் மின் நிலையங்களில் மின்னாக்கியை இயக்கவும் உதவுகின்றன.மேலும் இந்நீராவி தொழிலகச் செயல்முறைகளுக்கு வெப்பம் தரவும் அறைகளைச் சூடுபடுத்தவும் பயன்படுகிறது. அணுக்கரு உலைகள் ஓரகத் தனிமங்களை உருவாக்கவும் அணுக்கரு மருத்துவத்துக்கும் அணுக்கருப் படைக்கலன்களை உருவாக்கவும் அமைக்கப்படுகின்றன.சில ஆராய்ச்சிக்காகவும் உயராற்றல் புளூட்டோனியத்தை உண்டாக்கவும் பயன்படுகின்றன.இப்போது உலகின் பல நாடுகளில் 450 க்கும் மேற்பட்ட அணுக்கரு மின் நிலையங்கள் மின்னாக்கத்துக்கு இயங்கி வருகின்றன.[1]

முதலாவது அணுக்கரு உலை ஐக்கிய அமெரிக்காவின் சிக்காகோ பல்கலைக்கழகத்தின் உலோகவியல் ஆய்வகத்தில் CP1 என்ற சிக்காகோ உலை-1 (Chicago Pile-1) என்ற பெயரில் 1942 இல் என்றிகோ பெர்மியின் தலைமையில் உருவாக்கப்பட்டது.

இயங்குமுறை[தொகு]

ஓர் தூண்டிய அணுக்கருப் பிளவு வினை. யுரேனியம்-235 அணு நொதுமியை உட்கவர்கிறது. இது நொதுமியால் பிளவுபட்டு பல கட்டற்ற வேகமாக இயங்கும் நொதுமிகளையும் எடை குறைந்த தனிமங்களையும் உருவாக்குகிறது. அணுக்கரு உலைகளும் அணுகுண்டும் அணுக்கருத் தொடர்வினையையே பயன்படுத்தினாலும் உலையில் வினைவீதம் குண்டைவிட மிக மெதுவாக நடைபெறுகிறது.

வழக்கமாக அனல்மின் நிலையங்களில் நிலக்கரிபோன்ற புதைபடிவ எரிபொருளை எரிப்பதால் கிடைக்கும் வெப்ப ஆற்றலைப் பயன்படுத்தி மின்னாக்கம் நடைபெறுகிறது; அணுக்கரு மின் நிலையங்களில் அணுக்கரு உலைகளின் வெப்ப ஆற்றலைப் பயன்படுத்தி மின்னாக்கம் நடக்கிறது.

அணுப்பிளவு வினை[தொகு]

யுரேனியம்-235 அல்லது புளூட்டோனியம்-239 போன்ற பிளவுபடத் தக்க பெரிய அணுக்கரு நொதுமியை உறிஞ்சினால் அவை பிளவு வினைக்கு ஆட்பட்டன. அவ்வினையில் அது இரண்டு அல்லது அதற்கு மேற்பட்ட எடைகுறைந்த அணுக்கருக்களாக பிளவுண்டது. அப்போது பிளவுபொருள்களும் இயங்காற்றலும் காமாக் கதிர்களும் விடுபட்டு இயங்கும் நொதுமிகளும் வெளியிடப் பட்டன. இந்த நொதுமிகளில் ஒரு பகுதி. பிறகு பிற அணுக்களால் உறிஞ்சபட்டு மேலும் பிளவு நிகழ்ச்சிகளைக் கிளரச் செய்யும். இப்படியே தொடர்ந்து நிகழும் இந்தத் தொடர்வினை அணுக்கருத் தொடர்வினை எனப்படும்.

இந்த அணுக்கருத் தொடர்வினையைக் கட்டுபடுத்த, [[நொதுமி நச்சுகளும் நொதுமித் தணிப்பான்களும் பயன்படுகின்றன. இவை பிளவு வினையில் ஈடுபடவல்ல நொதுமிகளை மாற்றி வினைவேகத்தைக் குறைக்கின்றன.[2] கண்காணிப்பு வழி பாதுகாப்பற்ற நிலைமைகள் அறிந்தவுடனே பிளவு வினையைத் தானாகவும் கையால் இயக்கியும் கட்டுபடுத்தலாம் அல்லது நிறுத்தி விடலாம்.[3] வழக்கமான பயன்பாட்டில் தணிப்பான்களாக எடைகுறைந்த நீர் (உலக அணுக்கரு உலைகளில் 74.8% ),திண்மக் கரியதை ( graphite) (20% உலைகள்) அடர்நீர் (5% உலைகள்). சில செய்முறை உலைகளில் மாற்றுத் தணிப்பான்களாக பெரில்லியமும் நீரகக் கரிமங்களும் பயன்படுத்தியுள்ளனர்.[2][not in citation given]

வெப்ப உருவாக்கம்[தொகு]

அணுக்கரு உலை பலவழிகளில் வெப்பத்தை உருவாக்குகிறது:

  • பிளவுபடு பொருள்களின் இயக்க ஆற்றல், அருகில் உள்ள அணுக்களோடு மொத்தும்போது வெப்ப ஆற்றலாக மாறுகிறது.
  • அணுப்பிளவில் உருவாகிய காமாக் கதிர்களை உலை உறிஞ்சி வெப்ப ஆற்றலாக மாற்றுகிறது.
  • நொதுமி உறிஞ்சலால் செயல் ஊக்கமுற்ற பிளவுபடு பொருள்களின் கதிரியக்கச் சிதைவும் வெப்பத்தை உருவாக்குகிறது. இந்த வெப்ப வாயில் உலையைச் செயல்பாட்டில் இருந்து நிறுத்திய பிறகும் சிறிது நேரம் தொடரும்.

அணுக்கரு வினைகளால் மாற்றப்படு யுரேனியம்-235 (U-235) இன் ஒருகிலோகிராம் பொருண்மை தோராயமாக, ஒரு கிலோகிராம் அளவு நிலக்கரியை எரிக்குபோது கிடைக்கும் ஆற்றலைப் போல மூன்று மில்லியன் மடங்கு ஆற்றலைத் தருகிறது. (ஒரு கிலோகிராம் யுரேனியம்-235 பொருண்மைக்கு 7.2 × 1013 ஜூல்கள் :ஒரு கிலோகிராம் நிலக்கரி பொருண்மைக்கு 2.4 × 107 ஜூல்கள்).[4][5][சொந்தக் கருத்து?]

குளிர்த்தல்[தொகு]

வழக்கமாக, அணுக்கரு உலையின் குளிர்த்தியாக நீரே பயன்படுகிறது. மாற்றாக, சிலவேளைகளில் வளிம்மோ நீர்ம சோடியம் போன்ற நீர்மப் பொன்மமோ (நீர்ம உலோகமோ) உருகிய உப்போ கூடப் பயன்படுவதுண்டு. இந்தக் குளிர்த்தி உலையூடாக செலுத்தும்போது அது அணுக்கரு அகடு வெளியிடும் வெப்பத்தை உறிஞ்சுகிறது. இப்படி உறிஞ்சிய வெப்பம் பின்னர் நீராவியை உருவாக்க பயன்படுகிறது. அழுத்தமூட்டிய நீர் உலைகளைப் போல, பெரும்பாலான உலைகளில் குளிர்த்தும் அமைப்பு புறநிலையாக உலையமைப்பில் இருந்து தனையாகப் பிரித்துவைக்கப் படுகிறது. உலை வெப்பம் இந்த அமைப்பில் உள்ள நீரை அழுத்தமூட்டிய நீராவியாக மாற்றுகிறது. இந்த அழுத்தமூட்டிய நீராவி நீராவிச் சுழலியை இயக்குகிறது. என்றாலும் சில உலைகளில் நீராவிச் சுழலிக்கான நீராவியைப் பெர உலைகளே நேரடியாக நீரைக் கொதிக்கவைக்கின்றன; கொதிநீர் உலைகளில் இம்முறை பயன்படுகிறது.[6]

வினைதிறக் கட்டுபாடு[தொகு]

உலையின் திறன் வெளியீடு, நொதுமிகள் கூடுதலாக அணுப்பிளவை உருவாக்கு எண்ணீக்கையைக் கட்டுபடுத்தி, கட்டுபடுத்தப்படுகிறது.

கட்டுபாட்டுத் தண்டுகள் நொதுமிகலை உறிஞ்சும் நொதுமிநச்சால் செய்யப்படுகின்றன. கூடுதல் நொதுமிகள் கட்டுபாட்டுத் தண்டால் உறிஞ்சப்பட்டால் பிளவு வினையை நிகழ்த்த குறைந்த அளவு நொதுமிகளே எஞ்சும்.கட்டுபாட்டுத் தண்டை உலைக்குள் ஆழமாக நுழைத்தால் திறன் வெளியீடு குறையும்.அதை வெளியே இழுத்தால் திறன் வெளியீடு கூடும்.

மின்னாக்கம்[தொகு]

அணுப்பிளவு வெளியிடும் ஆற்றல் வெப்பத்தை உருவாக்குகிறது. இதன் ஒரு பகுதியை பயனுள்ள ஆற்றலாக மாற்றலாம். இந்த வெப்ப ஆற்றலைப் பயன்கொள்ளும் வழக்கமான முறை இவ்வெப்பத்தைப் பயன்படுத்தி நீரைக் கொதிக்கவைத்து அழுத்தமூட்டிய நீராவியைப் பெறுவதாகும். இந்த அழுத்தமூட்டிய நீராவியால் நிர்ரவிச் சுழலியை இயக்கி அதனுடன் இணைந்துள்ள மின்னாக்கிவழி மின்சாரத்தை உருவாக்கலாம்.[7]

தொடக்கநிலை அணுக்கரு உலைகள்[தொகு]

நொதுமி 1932 இல் கண்டுபிடிக்கப்பட்டது. நொதுமிகளால் தணிக்கப்படும் அணுக்கரு வினைகளால் உருவாகும் அணுக்கருத் தொடர்வினை, அதன் பிறகே 19933 இல் அங்கேரிய அறிவியலார் இலியோ சுசிலார்டு முயற்சியால் நடைமுறையில் இயல்வதானது.இவர் அடுத்த ஆண்டில் இலண்டன் அட்மிரால்ட்டி அலுவலகத்தில் பணிபுரியும்போது அணுக்கரு உலைக்கான உரிமம் கோரி விண்னப்பம் செய்தார்.[8]

தங்கள் ஆய்வகத்தில் இலைசு மெயிதனரும் ஆட்டோ ஃஏனும்.

நிலைய உறுப்புகள்[தொகு]

வட கரோலினா மாநிலப் பல்கலைக்கழகத்தின் துடிப்பு அணுக்கரு உலையின் கட்டுபாட்டு அறை.

அணுக்கரு மின் நிலையங்களின் பொதுவான உறுப்புகள்:


மேற்கோள்கள்[தொகு]

  1. Newman, Jay (2008). Physics of the Life Sciences. Springer. p. 652. ISBN 978-0-387-77258-5. http://books.google.com/books?id=vY5rXC4xlMgC. 
  2. 2.0 2.1 "DOE Fundamentals Handbook: Nuclear Physics and Reactor Theory" (PDF). US Department of Energy. மூல முகவரியிலிருந்து 23 April 2008 அன்று பரணிடப்பட்டது. பார்த்த நாள் 24 September 2008.
  3. "Reactor Protection & Engineered Safety Feature Systems". The Nuclear Tourist. பார்த்த நாள் 25 September 2008.
  4. "Bioenergy Conversion Factors". Bioenergy.ornl.gov. பார்த்த நாள் 18 March 2011.
  5. Bernstein, Jeremy (2008). Nuclear Weapons: What You Need to Know. Cambridge University Press. p. 312. ISBN 978-0-521-88408-2. http://www.cambridge.org/gb/knowledge/isbn/item1174921/?site_locale=en_GB. பார்த்த நாள்: 17 March 2011. 
  6. "How nuclear power works". HowStuffWorks.com. பார்த்த நாள் 25 September 2008.
  7. பிழை காட்டு: செல்லாத <ref> குறிச்சொல்; TOURISTRP என்னும் பெயரில் உள்ள ref குறிச்சொல்லுக்கு உரையேதும் வழங்கப்படவில்லை
  8. L. Szilárd, "Improvements in or relating to the transmutation of chemical elements," British patent number: GB630726 (filed: 28 June 1934; published: 30 March 1936).


வெளி இணைப்புகள்[தொகு]

"https://ta.wikipedia.org/w/index.php?title=அணுக்கரு_உலை&oldid=2127399" இருந்து மீள்விக்கப்பட்டது