மையப்படுத்தப்பட்ட வர்க்க எண்

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்

கணிதத்தில் மையப்படுத்தப்பட்ட வர்க்க எண் அல்லது மையப்படுத்தப்பட்ட சதுர எண் (centered square number) என்பது, மையப்படுத்தப்பட்ட வடிவ எண்களில் ஒரு வகையாகும். ஒரு புள்ளியை மையமாகக் கொண்டு மற்ற புள்ளிகளை அந்த மையப்புள்ளியைச் சுற்றித் தொடர்ந்து சதுர வடிவ அடுக்குகளாக அடுக்கக்கூடிய மொத்த புள்ளிகளின் எண்ணிக்கை ஒரு மையப்படுத்தப்பட்ட சதுர எண்ணாகும். பொதுவாக, வடிவ எண்களைப் போலவே மையப்படுத்தப்பட்ட சதுர எண்களுக்கும் நேரிடையான நடைமுறைப் பயன்கள் அவ்வளவாக இல்லை என்றாலும் இவற்றின் அழகான வடிவியல் மற்றும் எண்கணிதப் பண்புகளுக்காக இவை பொழுதுபோக்குக் கணிதத்தில் கையாளப்படுகின்றன.

முதல் நான்கு மையப்படுத்தப்பட்ட வர்க்க எண்களின் பட அமைப்பு:

GrayDot.svg     GrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svg
    GrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svg
    GrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svg
C_{4,1} = 1     C_{4,2} = 5     C_{4,3} = 13     C_{4,4} = 25

பிற வடிவ எண்களுடன் தொடர்பு[தொகு]

n -ஆம் மையப்படுத்தப்பட்ட வர்க்க எண் காணும் வாய்ப்பாடு:

C_{4,n} = n^2 + (n - 1)^2.\,

அதாவது அடுத்தடுத்த இரு வர்க்க எண்களின் கூட்டுத்தொகை ஒரு மையப்படுத்தப்பட்ட வர்க்க எண்ணாகும்.

பின்வரும் பட அமைப்பு இந்த வாய்ப்பாட்டை விளக்குகிறது:

GrayDot.svg     RedDot.svg
RedDot.svgGrayDot.svgRedDot.svg
RedDot.svg
    GrayDot.svg
GrayDot.svgRedDot.svgGrayDot.svg
GrayDot.svgRedDot.svgGrayDot.svgRedDot.svgGrayDot.svg
GrayDot.svgRedDot.svgGrayDot.svg
GrayDot.svg
    RedDot.svg
RedDot.svgGrayDot.svgRedDot.svg
RedDot.svgGrayDot.svgRedDot.svgGrayDot.svgRedDot.svg
RedDot.svgGrayDot.svgRedDot.svgGrayDot.svgRedDot.svgGrayDot.svgRedDot.svg
RedDot.svgGrayDot.svgRedDot.svgGrayDot.svgRedDot.svg
RedDot.svgGrayDot.svgRedDot.svg
RedDot.svg
C_{4,1} = 1     C_{4,2} = 1 + 4     C_{4,3} = 4 + 9     C_{4,4} = 9 + 16

மேலே தரப்பட்ட வாய்ப்பாட்டைப் பின்வருமாறு மாற்றி அமைக்கலாம்:

C_{4,n} = {(2n-1)^2 + 1 \over 2};

அதாவது, n -ஆம் மையப்படுத்தப்பட்ட வர்க்க எண், n -ஆம் ஒற்றை வர்க்க எண்ணில் பாதியளவு மற்றும் எண் ஒன்றின் கூட்டுத்தொகையாகும்.

GrayDot.svg     GrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgMissingDot.svg
MissingDot.svgMissingDot.svgMissingDot.svg
    GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgMissingDot.svgMissingDot.svg
MissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svg
MissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svg
    GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgMissingDot.svgMissingDot.svgMissingDot.svg
MissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svg
MissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svg
MissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svg
C_{4,1} = (1 + 1) / 2     C_{4,2} = (9 + 1) / 2     C_{4,3} = (25 + 1) / 2     C_{4,4} = (49 + 1) / 2

எல்லா பலகோண எண்களைப் போலவே மையப்படுத்தப்பட்ட வர்க்க எண்களையும் முக்கோண எண்களின் மூலமாக எழுதலாம்:

C_{4,n} = 1 + 4\, T_{n-1},\,

இங்கு T_n , n -ஆம் முக்கோண எண்.

T_n = {n(n + 1) \over 2} = {n^2 + n \over 2} = {n+1 \choose 2}

கீழே தரப்பட்டுள்ளபடி மையப்புள்ளியைத் தவிர்த்து மீதமுள்ள வடிவை நான்கு முக்கோணங்களாகப் பிரிக்க மேலேயுள்ள வாய்ப்பாடு கிடைக்கும்.

BlackDot.svg     RedDot.svg
GrayDot.svgBlackDot.svgGrayDot.svg
RedDot.svg
    RedDot.svg
RedDot.svgRedDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgBlackDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgRedDot.svgRedDot.svg
RedDot.svg
    RedDot.svg
RedDot.svgRedDot.svgGrayDot.svg
RedDot.svgRedDot.svgRedDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgBlackDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgRedDot.svgRedDot.svgRedDot.svg
GrayDot.svgRedDot.svgRedDot.svg
RedDot.svg
C_{4,1} = 1     C_{4,2} = 1 + 4 \times 1     C_{4,3} = 1 + 4 \times 3     C_{4,4} = 1 + 4 \times 6.

அடுத்தடுத்த இரு எண்முக எண்களின் வித்தியாசம் ஒரு மையப்படுத்தப்பட்ட வர்க்க எண்.([1])

பண்புகள்[தொகு]

முதல் மையப்படுத்தப்பட்ட வர்க்க எண்கள் சில:

1 , 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, 3961, 4141, 4325, … (OEISஇல் வரிசை A001844 ).

அனைத்து மையப்படுத்தப்பட்ட வர்க்க எண்களும் ஒற்றை எண்களாக இருப்பதைக் காணலாம். மேலும் அவை 1-5-3-5-1 என்ற அமைப்பில் உள்ளன..


ஒன்றைத் தவிர பிற மையப்படுத்தப்பட்ட சதுர எண்கள் அனைத்தும் பித்தாகரசின் மும்மைகளில் தாங்கிப்பக்கம்-செம்பக்கமாக இருப்பதைக் காணலாம் (எடுத்துக்காட்டு: 3-4-5, 5-12-13).

மையப்படுத்தப்பட்ட வர்க்கப் பகா எண்[தொகு]

ஒரு மையப்படுத்தப்பட்ட வர்க்க எண் ஒரு பகா எண்ணாகவும் இருக்குமானால் அது மையப்படுத்தப்பட்ட வர்க்கப் பகா எண் என அழைக்கப்படும். வர்க்க எண்கள் ஒருபோதும் பகா எண்களாக இருக்காது. ஆனால் சில மையப்படுத்தப்பட்ட வர்க்க எண்கள் பகா எண்களாக இருக்கும்.

மையப்படுத்தப்பட்ட வர்க்கப் பகா எண்கள் சில:

5, 13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, … (OEISஇல் வரிசை A027862 ).

குறிப்பு[தொகு]

  1. Conway and Guy, p.50

மேற்கோள்கள்[தொகு]

வெளி இணைப்புகள்[தொகு]