கணிதம்

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்
தென் அமெரிக்காவில் இருந்த பழம் மாயா மக்களின் எண்முறை
கணிதத்தில் பல்வகை நுட்பம் செறிந்த வடிவங்களைத் துல்லியமாக விளக்கலாம், அலசலாம். இப்படத்தைக் வரைபடமாகத் தரும் சார்பு: cos(y arccos sin|x| + x arcsin cos|y|)

கணிதம் (Mathematics) என்பது வணிகத்தில், எண்களுக்கு இடையான தொடர்பை அறிவதில், நிலத்தை அளப்பதில், அண்டவியல் நிகழ்வுகளை வருவதுரைப்பதில் மனிதனுக்கு இருந்த கணித்தலின் தேவைகள் காரணமாக எழுந்த ஓர் அறிவியல் பிரிவாகும். இந்த நான்கு தேவைகளும் பின்வரும் நான்கு பெரிய கணிதப் பிரிவுகளை பிரதிபடுத்துகின்றன:

வரையறை[தொகு]

கணிதம் (Math அல்லது Maths) இலக்கங்களும், அதன் செய்முறைகளும் (கூட்டல், கழித்தல், பெருக்கல், பிரித்தல்), அத்துடன் உருவ அமைப்புக்களும் (shapes) மட்டுமல்லாது விஞ்ஞான ஆராய்ச்சிகளுடனும், அதன் பிரயோகங்களுடனும் தொடர்ச்சியாக வளர்ந்து வரும் ஒரு அறிவியல் சாதனமாகும். கணிதத்தின் தேவை எமது அறிவியல் வளர்ச்சிக்கு ஒரு முக்கிய காரணியாகும். கலிலியோ "கணிதத்தின் உதவியால் நாம் இவ்வுலகத்தையே அறியலாம்" என்று கூறினார்.

எண்களை வைத்துக்கொண்டு உண்டாக்கப்பட்ட கணிப்பியலோ (arithmetic) வடிவங்களை வைத்துக்கொண்டு உண்டாக்கப்பட்ட வடிவியலோ இவைதான் கணிதவியல் என்று நினைப்போர் பலர். இன்னும் சிலர் எண்களுக்குப் பதிலாக குறிப்பீடுகளை வழங்கி அவைகளையும் எண்கள்போல் கணிப்புகள் செய்யும் இயற்கணிதம் தான் கணிதத்தின் முக்கிய பாகம் என்பர். மற்றும் சிலர் வடிவங்களை அலசி ஆராயும் வடிவியல் வளர்ச்சி தான் கணிதத்தின் இயல்பு என்று கூறுவர். ஆனால் கணிதம் இதையெல்லாம் தாண்டிய ஒன்று.

கணிதக்கட்டுரை விமரிசனங்கள்[தொகு]

Add caption here

கணித விமரிசனங்கள் (Mathematical Reviews) என்ற ஒரு பத்திரிகை 1940 இல் ஒரு சில பக்கங்களுடன் தொடங்கி ஒவ்வொருமாதமும் கணிதத்தில் எழுதப்படும் புது ஆய்வுக்கட்டுரைகளை விமரிசிக்கவென்றே ஏற்படுத்தப்பட்டது. அது இன்று மாதத்திற்கு 2000 பக்கங்கள் கொண்டதாக வளர்ந்து, ஆயிரக்கணக்கான ஆய்வுப்பத்திரிகைகளிலிருந்து ஏறக்குறைய இருபது லட்சம் கட்டுரைகளின் விமரிசனத்தை கணிதப் பொக்கிஷமாகக் காத்து வருகிறது.

இந்தியக்கணித வரலாறு[தொகு]

எண்ணும் எழுத்தும் இரண்டு கண்கள் போல என வள்ளுவர் கூறுகிறார். திருக்குறளில் ஒன்று, இரண்டு, மூன்று, நான்கு, ஐந்து, "அறு", "எழு", "எண்", பத்து, "கோடி" ஆகிய எண்கள் அல்லது தொகையீடுகள் அங்காங்கே பயன்படுத்தப்பட்டுள்ளன. எனினும் "தொண்டு" அல்லது "தொன்பது" பயன்படுத்தப்படவில்லை.[1]

தமிழ் எண்ணுருக்கள், தமிழில் பூச்சியத்துக்கு குறியீடு இல்லை.[1]


எண்களை எழுதுவதில் இடமதிப்புத் திட்டத்தையும் பூச்சியம் என்ற கருத்தையும் உருவாக்கி வருங்காலக் கணிதக்குறியீட்டுமுறைக்கு அடிகோலிட்டது பழையகால இந்தியா. இதைத்தவிர இந்தியக் கணிதவியலர்கள் (ஆரியபட்டர், பிரம்மகுப்தர், பாஸ்கராச்சாரியர், இன்னும் பலர்) மேற்கத்தியநாடுகள் மறுமலர்ச்சியடைந்து அறிவியலில் வளர்வதற்கு முன்னமேயே பலதுறைகளில் முன்னேற்றம் கண்டிருந்தனர்.

  • வேதகாலத்துக்கணிதத்தின் கணிப்பு முறைகள்
  • சுல்வசூத்திரங்களின் வடிவியல்
  • சூனியமும் இடமதிப்புத் திட்டமும்
  • எண்களின் அடிப்படைகளைப்பற்றி ஜைனர்கள்
  • பாக்சாலி கையெழுத்துப்பிரதிகளின் சமன்பாடுகள்
  • வானவியல்

இவையெல்லாம் இந்தியக்கணிதத்தின் சிறப்புகள்.

தற்காலத்திய கணிதத்தின் வரலாறு[தொகு]

14 வது நூற்றாண்டில் தொடங்கி, சென்ற ஆறு நூற்றாண்டுகளில் கணிதத்தின் வளர்ச்சியைத் தெரிந்துகொள்ள கணிதவியலாளர்கள் பலரின் வரலாறுகளே தக்க சான்றுகள். ஃபெர்மா, நியூட்டன், ஆய்லர், காஸ், கால்வா, ரீமான், கோஷி, ஏபல், வியர்ஸ்ட்ராஸ், கெய்லி, கேன்ட்டர், ஹில்பர்ட், இப்படி இன்னும் நூற்றுக்கணக்கானவர்கள் பங்கு கொண்டு உருவாக்கப்பட்ட கணிதம் இன்றைய கணிதம்.

கணிதம் சம்பந்தமான பல்வேறு துணப் பிரிவுகள்[தொகு]

கணிதத்தின் தற்காலப் பிரிவுகளைப் பற்றி பட்டியலிடவேண்டுமானால் அப்பட்டியலில் 100 தாய்ப்பிரிவுகளாவது இருக்கும். இப்பிரிவுகளுக்குள் மிகவும் வியப்பு தரும் உறவுகள் உண்டு. இவைகளிலெல்லாம் கணிதத்திற்கென்றே தனித்துவம் வாய்ந்த மரபும் குறிப்பிடத்தக்கது. இம்மரபுதான் கணிதத்தை மற்ற அறிவியல் துறைகளிலிருந்து பிரித்துக் காட்டுகிறது.இவைதவிர, கணிதத்தின் அடிப்படைகளுக்கும் மற்ற துறைகளுக்குமான தொடர்பை தருக்கவியலும் ஆய்கின்றது. மேலும் புள்ளியியல் போன்ற நேரடியாகப் பயன்படும் கணிதத் துறைகளும் உண்டு.

அளவு (Quantity)[தொகு]

1, 2, 3\,\! -2, -1, 0, 1, 2\,\!  -2, \frac{2}{3}, 1.21\,\! -e, \sqrt{2}, 3, \pi\,\! 2, i, -2+3i, 2e^{i\frac{4\pi}{3}}\,\!
இயல்பெண்கள் முழு எண்கள் விகிதமுறு எண்கள் மெய்யெண்கள் செறிவெண்கள்

அமைப்பு (Structure)[தொகு]

Elliptic curve simple.png Rubiks cube solved.jpg Group diagdram D6.svg Lattice of the divisibility of 60.svg
எண் கோட்பாடு நுண்புல இயற்கணிதம் குலக் கோட்பாடு (Group Theory) Order theory

வெளி (Space)[தொகு]

Pythagorean.svg Taylorsine.svg Osculating circle.svg Torus.png Von koch 6 etapes.svg
வடிவவியல் முக்கோணவியல் வகையீட்டு வடிவவியல் (Differential geometry) இடவியல் பகுவல்

மாற்றம் (Change)[தொகு]

Integral as region under curve.svg Vectorfield jaredwf.png Differential.png Limitcycle.jpg Lorenz attractor.svg
நுண்கணிதம் திசையன் நுண்கணிதம் வகையீட்டு சமன்பாடுகள் இயங்கியல் அமைப்புகள் (Dynamical systems) ஒழுங்கின்மை கோட்பாடு

கணித அடித்தளங்கள் (Foundations and philosophy)[தொகு]

 P \Rightarrow Q \, Venn A intersect B.svg Commutative diagram for morphism.svg
தருக்கவியல் (கணிதம்) கணக் கோட்பாடு, கணம் (கணிதம்) விகுதிக் கோட்பாடு (Category theory)

இலக்கமியல் கணிதம் (Discrete mathematics)[தொகு]

\begin{matrix} (1,2,3) & (1,3,2) \\ (2,1,3) & (2,3,1) \\ (3,1,2) & (3,2,1) \end{matrix} DFAexample.svg Caesar3.svg 6n-graf.svg
சேர்வியல் கணிமைக் கோட்பாடு வரைவியல் (Cryptography) கோலக்கோட்பாடு (Graph theory)

இவற்றையும் பார்க்கவும்[தொகு]

மேற்கோள்கள்[தொகு]

  1. நெல்லை. சு. முத்து. (1994). வள்ளுவர் கண்ட அறிவியல். சென்னை: வானதி பதிப்பகம்.

வெளி இணைப்புக்கள்[தொகு]

கணிதத்தின் முக்கிய துறைகள் தொகு
எண்கணிதம் | அளவியல் | கணக் கோட்பாடு | இயற்கணிதம் | அடிப்படை இயற்கணிதம் | நேரியல் இயற்கணிதம் | நுண்புல இயற்கணிதம் | வடிவவியல் | பகுவியல் | நுண்கணிதம் | நிகழ்தகவு | புள்ளியியல் | சேர்வியல் | முக்கோணவியல் | இடவியல் | தருக்கவியல் | முடிச்சியல் | ஒழுங்கின்மை கோட்பாடு | பயன்பாட்டுக் கணிதம்

ho

"http://ta.wikipedia.org/w/index.php?title=கணிதம்&oldid=1341023" இருந்து மீள்விக்கப்பட்டது