ஆட்டக் கோட்பாடு

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்


ஆட்டக் கோட்பாடு (Game theory) என்பது பயன்படு கணிதத்தின் ஒரு கிளைத் துறையாகும். அது சமூக அறிவியலிலும் மிகவும் அதிகமாக பொருளியலிலும் அதே போல உயிரியல், பொறியியல், அரசியல் அறிவியல், சர்வதேச உறவுகள், கணிப்பொறி அறிவியல் மற்றும் தத்துவம் ஆகிய பல துறைகளிலும் பயன்படுத்தப்படுகிறது. ஒரு தனிநபரின் தெரிவின் வெற்றியானது மற்றவர்களின் தெரிவுகளைச் சார்ந்ததாக இருக்கும் செயல் உத்தியியல் சூழ்நிலைகளில் காணப்படும் செயல் பண்புகளை கணிதவியல் ரீதியாக அறிந்து முன்வைக்க விளையாட்டுக் கொள்கை முயற்சிக்கிறது. ஒருவரின் ஆதாயம் எதிரியின் இழப்பைப் பொறுத்து அமைகின்ற வகையிலான (ஜீரோ சம் கேம்கள்) போட்டிகளைப் பகுப்பாய்வு செய்யவே இது முதலில் உருவாக்கப்பட்டது. பின்னர் அது பல திட்ட அளவைகளைப் பொறுத்து வகைப்படுத்தப்படும் பல பரந்துவிரிந்த இடைசெயலம்சங்களுக்கும் பயன்படுத்தும் வகையில் விரிவாக்கப்பட்டது. தற்போது இத்துறை "சமூக அறிவியலின் பகுத்தறிதல் ரீதியான பகுதிக்கான ஒரு வகை குடை போன்றதும் 'ஒருங்கிணைக்கப்பட்ட துறையும்' ஆகும். இங்கு 'சமூகம்' என்பது பரந்துபட்ட பொருளில் பொருள்கொள்ளப்படுகிறது. அது மனித விளையாட்டுப் போட்டியாளர்களையும் அதே போல் மனிதர்-அல்லாத விளையாட்டுப் போட்டியாளர்களையும் (கணினிகள், விலங்குகள், தாவரங்கள்) சேர்த்தே பயன்படுத்தப்படுகிறது"(Aumann 1987).

விளையாட்டுக் கொள்கையின் பாரம்பரியமான பயன்பாடுகள் இவ்வகை விளையாட்டுகளில் சமநிலையைக் கண்டறிய முயற்சிக்கின்றன. அவ்வாறான ஒரு சமநிலையில் விளையாட்டில் பங்கு பெற்ற ஒவ்வொரு போட்டியாளரும் பின்னர் மாற்றிக்கொள்ளாத வகையிலான ஒரு குறிப்பிட்ட உத்தியைப் பயன்படுத்தத் தொடங்குகின்றனர். இந்தக் கருத்தைப் பயன்படுத்துவதைச் செயல்படுத்தும் முயற்சியில் பல்வேறு சமநிலைக் கருத்துகள் உருவாக்கப்பட்டுள்ளன (அவற்றுள் நாஷ் சமநிலை மிகவும் பிரபலமானதாகும்). இந்தச் சமநிலைக் கருத்துகள், பயன்படுத்தப்படும் துறைக்கேற்ப வெவ்வேறு விதமாக செயல்படுத்தப்படுகின்றன. எனினும் அவ்வப்போது அவை ஒன்றுடன் ஒன்று பொருந்துவதும் ஒரு சேர நிகழ்வதும் பொதுவாக உள்ளது. இந்த முறை விமர்சனத்திற்கு உள்ளாகாமல் இல்லை. குறிப்பிட்ட சமநிலைக் கருத்துகளின் சரியாக இருக்கும் தன்மை, அனைத்து சமநிலைகளும் ஒருங்கிணைந்த நிலையில் அதன் சரியாக இருக்கும் தன்மை மற்றும் பொதுவாக கணிதவியல் மாதிரிகளின் பயன்படுதன்மை ஆகியவை பற்றிய விவாதங்கள் தொடர்ந்து நடைபெற்றுவருகின்றன.

முன்னரே சில மேம்பாடுகள் நிகழ்ந்திருந்தாலும் விளையாட்டுக் கொள்கை எனும் துறை 1944 ஆம் ஆண்டில் ஜான் வான் நியூமன் மற்றும் ஆஸ்கர் மார்கென்ஸ்டெர்ன் ஆகியோரின் தியரி ஆஃப் கேம்ஸ் அண்ட் எக்கனாமிக் பிஹேவியர் எனும் புத்தகம் வெளிவந்தபோதே இத்துறை குறிப்பிடும்படி உருவானது. இந்தக் கொள்கையை 1950களில் பல கல்வியாளர்கள் பரந்துபட்ட நோக்கில் மேம்படுத்தினர். பின்னர் விளையாட்டுக் கொள்கையானது 1970களில் பிரத்தியேகமாக உயிரியலில் பயன்படுத்தப்பட்டது. இருப்பினும் 1930களிலேயே சில முன்னேற்றம் இருந்ததாக அறியப்படுகிறது. விளையாட்டுக் கொள்கையானது பல துறைகளில் முக்கியமான ஒரு கருவியாகக் கருதப்பட்டுவந்தது. விளையாட்டுக் கொள்கையாளர்கள் எட்டு பேர் பொருளியலில் நோபல் பரிசுகளை வென்றுள்ளனர். மேலும் ஜான் மேய்னர் ஸ்மித் உயிரியலில் விளையாட்டுக் கொள்கையைப் பயன்படுத்தியதற்காக க்ரஃபூர்ட் பரிசைப் பெற்றார்.

பொருளடக்கம்

விளையாட்டுகளின் கருத்துவிளக்கம்[தொகு]

பொருளியல்
GDP PPP Per Capita IMF 2008.svg
பொது பகுப்புகள்
சிற்றினப்பொருளியல் · பருப்பொருளியல்
பொருளாதார எண்ணங்களின் வரலாறு
Methodology · Mainstream & heterodox
தொழில்நுட்ப வழிமுறைகள்
பொருளியல் கணிதம்
ஆட்டக் கோட்பாடு  ·Optimization
Computational · Econometrics
Experimental · National accounting
Fields and subfields

நடத்தை · பண்பாடு · படிவளர்ச்சிக் கொள்கை
வளர்ச்சி · உருவாக்கம் · வரலாறு
சர்வதேசம் · பொருளாதார அமைப்புக்கள்
பணவியல் கொள்கை மற்றும் நிதிப் பொருளியல்
பொது மற்றும் பொதுநலம் பொருளியல்
நலம் · கல்வி · பொதுநலம்
மக்கள்தொகை பொருளியல் ·தொழிலாளர்கள் ·மேலாண்மை
வியாபாரம் ·தகவல்
தொழில்துறை நிறுவனங்கள் · சட்டம்
வேளாண்மை · இயற்கை வளம்
சுற்றுப்புறம் · சூழ்நிலையியல்
நகரம் · நாட்டுப்புறம் · வட்டாரம் · புவியியல்

பட்டியல்கள்

பத்திரிக்கைகள் · பதிப்புகள்
பகுப்புகள் · கட்டுரைகள் · பொருளாதார நிபுணர்கள்

வணிகமும் பொருளியலும் வலைவாசல்

விளையாட்டுக் கொள்கையில் ஆய்வு செய்யப்படும் விளையாட்டுகள் என்பவை நன்கு வரையறுக்கப்பட்ட கணிதவியல் பொருள்கூறுகள் ஆகும். ஒரு விளையாட்டில் ஒரு குறிப்பிட்ட எண்ணிக்கையிலான போட்டியாளர்களின் தொகுப்பும், அந்தப் போட்டியாளர்களுக்கு நிகழ்த்த வாய்ப்புள்ள நகர்வுகளின் தொகுப்பும் (அல்லது உத்திகள்) மற்றும் குறிப்பிட்ட தொடர்சேர்க்கையிலான நகர்வுகளுக்கான அவற்றுக்கே உரிய விளைவுகள் பற்றிய குறிப்பு விவரங்களும் இருக்கும். மிகவும் இணைசெயலம்சம் கொண்ட விளையாட்டுகளை விளக்க சிறப்பியல்புச் சார்பு வடிவமும் இணைசெயலம்சம் இல்லாத விளையாட்டுகளை வரையறுக்க விரிவான மற்றும் இயல்பான வடிவங்களும் பயன்படுத்தப்படுகின்றன.

விரிவான வடிவம்[தொகு]

ஒரு விரிவான வடிவ விளையாட்டு

விளையாட்டுகளை சில முக்கிய வரிசைகளின் படி சூத்திரப்படுத்த விரிவான வடிவம் பயன்படுத்தப்படலாம். இவ்வகையில் விளையாட்டுகள் கிளையமைப்பாக (இடப்புறத்தில் உள்ளதைப் போல) விளக்கப்படுகின்றன. விளையாட்டுகளை சில முக்கிய வரிசைகளின் படி சூத்திரப்படுத்த விரிவான வடிவம் பயன்படுத்தப்படலாம். உச்சியால் பட்டியலிடப்பட்ட ஓர் எண்ணால் போட்டியாளர் குறிப்பிடப்படுகிறார். உச்சியிலிருந்து செல்லும் கோடுகள் அந்தப் போட்டியாளருக்கான சாத்தியமுள்ள செயல்களைக் குறிக்கின்றன. விளைவுகள் கிளையமைப்பின் அடிப்பகுதியில் குறிப்பிடப்பட்டுள்ளன.

இங்கு சித்தரிக்கப்பட்டுள்ள விளையாட்டில் இரண்டு போட்டியாளர்கள் உள்ளனர். போட்டியாளர் 1 முதலில் செயல்பட்டு F அல்லது U ஐத் தேர்வு செய்கிறார். போட்டியாளர் 2 , போட்டியாளர் 1 இன் செயலைக் கண்டு A அல்லது R ஐத் தேர்வு செய்கிறார். ஒருவேளை போட்டியாளர் 1, U ஐத் தேர்வு செய்து, போட்டியாளர் 2, A ஐத் தேர்வு செய்தால், போட்டியாளர் 1 8 மற்றும் போட்டியாளர் 2 2 என்ற புள்ளிகளைப் பெறுகின்றனர்.

விரிவான வடிவங்களால் ஒருநேர நகர்வுகள் உள்ள விளையாட்டுகள் மற்றும் முழுமையற்ற தகவலைக் கொண்ட விளையாட்டுகள் ஆகியவற்றையும் விளக்க முடியும். இதை விளக்க ஒரு புள்ளியிட்ட கோடு இரு வேறு முனைகளை, அவை ஒரே தகவல் தொகுப்பினைச் சேர்ந்தவை (அதாவது, போட்டியாளர்கள் தாங்கள் எந்தப் புள்ளியில் உள்ளனர் என்பதை அறியமாட்டார்கள்) எனக் குறிப்பிடும் வகையில் இணைக்கிறது அல்லது அவர்களைச் சுற்றி ஒரு மூடிய கோடு வரையப்படுகிறது.

இயல்பான வடிவம்[தொகு]

Player 2
chooses Left
Player 2
chooses Right
Player 1
chooses Up
4, 3 –1, –1
Player 1
chooses Down
0, 0 3, 4
Normal form or payoff matrix of a 2-player, 2-strategy game

இயல்பான (அல்லது செயலுத்தியியல் வடிவம்) விளையாட்டு வழக்கமாக ஒரு அணியின் மூலம் விளக்கப்படுகிறது. அதில் போட்டியாளர்கள் உத்திகள் மற்றும் விளைவுகள் ஆகியவை காண்பிக்கப்படுகின்றன (வலப்புறம் உள்ள எடுத்துக்காட்டைக் காண்க). மிகவும் பொதுவாக அதை ஒவ்வொரு போட்டியாளருக்கும் சாத்தியமுள்ள செயல் தொடர்களுடன் கூடிய ஒரு விளைவைக் கொண்டுள்ள ஒரு சார்பின் மூலம் விளக்கலாம். இந்த எடுத்துக்காட்டில் இரு போட்டியாளர்கள் உள்ளனர். ஒருவர் வரிசையையும் மற்றொருவர் செங்குத்து வரிசையையும் தேர்வு செய்துகொள்கின்றனர். ஒவ்வொரு போட்டியாளருக்கும் இரு உத்திகள் உள்ளன. அவை வரிசை மற்றும் செங்குத்து வரிசையால் குறிக்கப்படுகின்றன. இதில் விளைவுகள் உட்புறத்தில் கொடுக்கப்பட்டுள்ளன. இதில் உள்ள முதல் எண் வரிசை போட்டியாளர் (நமது எடுத்துக்காட்டில் போட்டியாளர் 1) பெற்ற விளைவாகும். இரண்டாவதுள்ளது செங்குத்து வரிசை போட்டியாளர் (நமது எடுத்துக்காட்டில் போட்டியாளர் 2) பெற்ற விளைவாகும். ஒருவேளை போட்டியாளர் 1 மேலேயும் போட்டியாளர் 2 கீழேயும் நகர்ந்து விளையாடினால். போட்டியாளர் 1 க்கு விளைவுப் புள்ளிகள் 4 மற்றும் போட்டியாளர் 2 க்கு 3 எனவும் கிடைக்கிறது.

ஒரு விளையாட்டு இயல்பான வடிவத்தில் விளக்கப்படும் போது, ஒவ்வொரு போட்டியாளரும் ஒரே நேரத்தில் அல்லது குறைந்தபட்சம் ஒருவர் செயலை மற்றொருவர் அறியாவண்ணமாக செயல்படுகின்றனர் எனப் புரிந்துகொள்ளப்படுகிறது. போட்டியாளர்களுக்கு பிற போட்டியாளர்களின் தெரிவைப் பற்றி சில தகவல் தெரியுமானால், அந்த விளையாட்டு விரிவான வடிவில் விளக்கப்படுகிறது.

சிறப்பியல்பு சார்பு வடிவமும்[தொகு]

மாற்றத்தக்க பயன்பாட்டைக் கொண்டுள்ள இணைசெயல் தன்மை கொண்ட விளையாட்டுகளுக்கு தனிப்பட்ட நபருக்கான விளைவுப் புள்ளிகள் வழங்கப்படுவதில்லை. அதற்குப் பதிலாக சிறப்பியல்புச் சார்பானது ஒவ்வொரு சேர்க்கைக்கும் விளைவுப் புள்ளியைத் தீர்மானிக்கிறது. ஒரு வெற்று சேர்க்கைக்கான விளைவுப்புள்ளி 0 என்பது தரநிலையான கருதுகோளாகும்.

இந்த வடிவத்தின் தோற்றமானது இந்த முன்னேற்றத்துக்கான வேராக அமைந்த வான் நியூமன் மற்றும் மார்கென்ஸ்டெர்ன் ஆகியோரின் புத்தகத்தில் காணப்படுகிறது. அவர்கள் சேர்க்கைத் தன்மை கொண்ட இயல்பு வடிவ விளையாட்டுகளை ஆய்வு செய்தனர். அவர்கள் ஒரு சேர்க்கையானதுC உருவாகும் போது அது அதற்கு நிரப்பியான சேர்க்கைக்கு எதிராக விளையாடுகிறது என்ற ஊகத்தினடிப்படையில் செயல்பட்டனர்(N\setminus C) அதாவது இதில் அவை இரண்டும் 2-போட்டியாளர்கள் விளையாடும் ஒரு விளையாட்டை விளையாடுவதைப் போல செயல்படுகின்றன. C இன் சமநிலை விளைவுப்புள்ளி சிறப்பியல்பு கொண்டதாகும். இப்போது இயல்பு வடிவ விளையாட்டுகளில் இருந்து சேர்க்கை மதிப்புகளை வருவிக்க பல்வேறு மாதிரிகள் உள்ளன. ஆனால் சிறப்பியல்புச் சார்பு வடிவத்திலுள்ள அனைத்து விளையாட்டுகளையுமே இவ்வாறு இயல்பு வடிவ விளையாட்டுகளில் இருந்து வருவிக்க முடியாது.

முறையாக, ஒரு சிறப்பியல்புச் சார்பு விளையாட்டானது (TU-விளையாட்டு எனவும் அழைக்கப்படுகிறது) ஒரு இணையாகவே கொடுக்கப்படுகிறது(N,v). இதில் N என்பது போட்டியாளர்களையும் v:2^N\longrightarrow\mathbb{R} என்பது சிறப்பியல்புச் சார்பையும் குறிக்கிறது.

சிறப்பியல்புச் சார்பு வடிவமானது மாற்றத்தக்க பயன்பாடு எனும் கருதுகோள் இல்லாத விளையாட்டுகளுக்கென பொதுவாக்கப்பட்டுள்ளது.

பங்கீட்டு சார்பு வடிவம்[தொகு]

சிறப்பியல்பு சார்பு வடிவமானது சாத்தியமுள்ள சேர்க்கை உருவாக்கத்திற்கான புறத்தன்மையை புறக்கணிக்கிறது. பங்கீட்டுச் சார்பு வடிவத்தில் ஒரு சேர்க்கைக்கான விளைவுப்புள்ளியானது அதன் உறுப்பினர்களை மட்டுமே சார்ந்ததல்ல. அது அவருடன் சேர்ந்து பங்கேற்கும் மீதமுள்ள போட்டியாளர்கள் செயல்படும் விதத்தையும் சார்ந்தது(Thrall & Lucas 1963).

பயன்பாடும் சவால்களும்[தொகு]

விளையாட்டுக் கொள்கையானது மனிதர்களிலும் விலங்குகளிலும் பரந்துபட்ட நடத்தைகளை ஆய்வு செய்ய பயன்படுத்தப்பட்டு வருகிறது. நிறுவனங்கள், சந்தைகள் மற்றும் நுகர்வோர் உள்ளிட்ட பெரும் எண்ணிக்கையிலான தொகுப்புகளின் நடத்தைகளைப் புரிந்துகொள்வதற்காக இது முதலில் பொருளியலில் உருவாக்கப்பட்டது. சமூக அறிவியல்களில் விளையாட்டுக் கொள்கையின் பயன்பாடானது மிகவும் விரிவடைந்துள்ளது. மேலும் விளையாட்டுக் கொள்கை அரசியல் அறிவியல், சமூகவியல் மற்றும் உளவியல் நடத்தைகள் ஆகியவற்றிலும் பயன்படுத்தப்படுகிறது.

விளையாட்டுக் கோட்பாட்டுப் பகுப்பாய்வு என்பது முதலில் 1930களில் ரொனால்டு ஃபிஷெர் என்பவரால் முதலில் விலங்குகளின் நடத்தைகளை ஆய்வு செய்வதற்காகப் பயன்படுத்தப்பட்டது (இருப்பினும் சார்லஸ் டார்வினும் சில முறைசாரா விளையாட்டுக் கோட்பாட்டு அறிக்கைகளைப் பயன்படுத்தியுள்ளார்). இந்தப் பணியானது "விளையாட்டுக் கொள்கை" என்ற பெயர் வருவதற்கு முன்னான காலத்திலேயே நடந்துள்ளது. ஆனால் அதற்கு இந்தத் துறையின் முக்கிய அம்சங்களுடன் தொடர்புடையதாக உள்ளது. பொருளியலிலான மேம்பாடுகள் பின்னாளில் ஜான் மேய்னர் ஸ்மித் அவர்களால் எவல்யூஷன் அண்ட் த தியரி ஆஃப் எனும் அவரது புத்தகத்தில் பெரிய அளவில் உயிரியலில் பயன்படுத்தப்பட்டது.

நடத்தையை முன்கணித்தல் மற்றும் விளக்குதல் ஆகியவற்றுக்குப் பயன்படுத்தப்படுவதுடன் விளையாட்டுக் கொள்கையானது நன்னெறி அல்லது சரியான நடத்தை தொடர்பான கொள்கைகளை உருவாக்கும் முயற்சிக்கும் பயன்படுத்தப்பட்டுள்ளது. கல்வியாளர்கள், பொருளியல் மற்றும் தத்துவத்தில், சிறந்த அல்லது சரியான நடத்தையைப் புரிந்துகொள்ள உதவியாக இருக்க விளையாட்டுக் கொள்கையை பயன்படுத்தியுள்ளனர். இவ்வகையான விளையாட்டுக் கொள்கை ரீதியலமைந்த விவாதங்கள் பிளேட்டோ அவர்களின் காலத்திலேயே காணப்பட்டன.[1]

அரசியல் அறிவியல்[தொகு]

அரசியல் அறிவியலில் விளையாட்டுக் கொள்கையின் பயன்பாடானது வளப்பிரிப்பு, அரசியல் பொருளாதாரம், பொதுத் தெரிவு, போர் பேரம், நேர்மறை அரசியல் கோட்பாடு மற்றும் சமூகத் தெரிவுக் கோட்பாடு போன்றவற்றின் அரசியலுடன் ஒத்துப்போகும் பகுதிகளை மையமாகக் கொண்டுள்ளது. இந்த ஒவ்வொரு துறைகளிலும், ஆராய்ச்சியாளர்கள் விளையாட்டுக் கொள்கை மாதிரிகளை உருவாக்கியுள்ளனர். அவற்றில் இதில் பெரும்பாலும் வாக்காளர்கள், மாநிலங்கள், சிறப்பார்வக் குழுக்கள் மற்றும் அரசியல்வாதிகள் ஆகியோர் போட்டியாளர்களாக இருக்கின்றனர்.

அரசியல் அறிவியலில் பயன்படுத்தப்படும் விளையாட்டுக் கொள்கைக்கு பழைய எடுத்துக்காட்டுகளுக்கு ஆண்டனீ டௌன்ஸ் அவர்களின் பணிகளைக் காண்க. அன் எக்கனாமிக் தியரி ஆஃப் டெமாக்ரசி எனும் அவரது புத்தகத்தில்(Downs 1957), அரசியல் செயலாக்கத்திற்கு அவர் ஹோட்டெலிங் நிறுவன இருப்பிட மாதிரியைப் பயன்படுத்துகிறார். டௌன்சியன் மாதிரியில், அரசியல் வேட்பாளர்கள் ஒற்றைப் பரிமாணக் கொள்கை அமைப்பிலான சித்தாந்தங்களுக்கு உறுதியளிக்கின்றனர். இதில் அரசியல் வேட்பாளர்கள் ஒரு சராசரி வாக்காளர் விரும்பும் சித்தாந்தத்தை எவ்வாறு பின்பற்றுகின்றனர் என இந்தக் கொள்கையாளர் விளக்குகிறார். மிகவும் சமீபத்திய எடுத்துக்காட்டுகளுக்கு, ஸ்டீவன் ப்ராம்ஸ், ஜியார்ஜ் செப்லிஸ், ஜீன் எம். க்ராஸ்மேன் மற்றும் எல்ஹனான் ஹெல்ப்மேன் அல்லது டேவிட் ஆஸ்டன்-ஸ்மித் மற்றும் ஜெஃப்ரி எஸ். பேங்க்ஸ் ஆகியோரின் புத்தகங்களைக் காண்க.

ஜனநாயகத்தில் நிகழ்த்தப்படும் பொது மற்றும் திறந்த நிலை விவாதங்கள் அவர்களின் நோக்கங்களைப் பற்றிய தெளிவான மற்றும் நம்பகமான தகவல்களைப் பிற மாநிலங்களுக்கு வழங்கும் என்பதே உள்நாட்டு அமைதிக்கான விளையாட்டுக் கொள்கை ரீதியான விளக்கம் ஆகும். இதற்கு மாறாக ஜனநாயக ரீதியிலல்லாத தலைவர்களின் நோக்கங்கள், விளைவுக்கான சலுகைகள் என்னவாக இருக்கும், வாக்குறுதிகள் நிறைவேற்றப்படுமா என்பது போன்றவற்றை அறிவது கடினம். இதனால் கட்சியிலுள்ள ஒருவருக்கு ஜனநாயகமற்ற கொள்கையில் கருத்து வேறுபாடு இருப்பினும், நம்பிக்கையின்மையும், சலுகைகள் அளிப்பதற்கு விருப்பமின்மையும் நிலவக் கூடும் (Levy & Razin 2003).

பொருளாதாரமும் வணிகமும்[தொகு]

பொருளியலாளர்கள் பல்வேறு பரந்துபட்ட பொருளாதார நிகழ்வுகளைப் பகுப்பாய்வு செய்ய நீண்டகாலமாகப் பயன்பாட்டிலுள்ள விளையாட்டுக் கொள்கைகளைப் பயன்படுத்துகின்றனர், ஏலங்கள், பேரம், இருமுனைச் சந்தை, வளப் பிரிப்பு, குறை விற்பனையாளர் சந்தை, சமூக நெட்வொர்க் உருவாக்கம் மற்றும் வாக்களிப்பு முறைமைகள் போன்றவை இதிலடங்கும். பொதுவாக இந்த ஆராய்ச்சியானது விளையாட்டுகளில் சமநிலைகள் எனப்படும் செயலுத்திகளின் குறிப்பிட்ட சில தொகுப்புகளையே மையமாகக் கொண்டுள்ளன. இந்தத் "தீர்வுக் கருத்துகள்" பொதுவாக பகுத்தறிவுக்கு ஏற்றபடி எது தேவையானது என்பதனடிப்படையில் அமைந்துள்ளன. இணைசெயல் தன்மையற்ற விளையாட்டுகளில், இவற்றில் மிகப் பிரபலமானது நாஷ் சமநிலை ஆகும். பல உத்திகளின் தொகுப்பில் ஒவ்வொரு உத்தியும் மற்ற உத்திகளுக்கு மறுவினை புரிகின்றன எனில் அவை நாஷ் சமநிலையில் உள்ளதாகக் கருதப்படும். ஆகவே நாஷ் சமநிலையிலான உத்திகளின் படியே அனைத்து போட்டியாளர்களும் விளையாடினால், திசைதிருப்புவதற்கான ஒரு பக்க அழுத்தமானது எவருக்கும் இருக்காது, மற்றவர்கள் என்ன செய்கிறார்கள் என்பது அவர்களுக்குத் தெரிந்திருக்கும் நிலையில் அவர்களால் கையாளக்கூடிய சிறப்பான உத்தி அதுவே ஆகும் என்பதே இதற்குக் காரணமாகும்.

விளையாட்டின் விளைவுப்புள்ளியானது ஒவ்வொரு தனி போட்டியாளரின் பயன்பாட்டையும் காண்பிப்பதற்காகப் பயன்படுத்தப்படுகிறது. பெரும்பாலும் மாதிரியாக்கல் சூழ்நிலைகளில் விளைவுப்புள்ளியானது பணத்தைக் குறிக்கிறது. இங்கு அதை தனிநபரின் பயன்பாட்டைச் சார்ந்தது என்று கருதலாம். இருப்பினும் இந்தக் கருதுகோள் தவறாகவும் இருக்கலாம்.

ஒரு குறிப்பிட்ட பொருளாதாரச் சூழ்நிலையினை அடிப்படைச் சாரமாகக் கொண்டு உருவாக்கப்பட்ட ஒரு விளையாட்டை உணர்த்துவதன் மூலமே பொருளாதாரத்திற்கான விளையாட்டுக் கொள்கையைப் பயன்படுத்துவதற்கான முன்மாதிரி தொடங்குகிறது. இதில் ஒன்று அல்லது மேற்பட்ட தீர்வுக் கருத்துகள் தேர்வு செய்யப்படுகின்றன. மேலும் விளக்கப்பட்ட விளையாட்டில் எந்தெந்த செயலுத்தி தொகுப்புகள் சரியான வகையைச் சேர்ந்த சமநிலைகளாகும் என்பதையும் ஆசிரியர் விளக்குகிறார். இயல்பாக இந்தத் தகவல் என்ன பயனைக் கொடுக்க வேண்டும் என்று ஒருவர் வியக்கலாம். பொருளியலாளர்களும் வணிகப் பேராசிரியர்களும் இரண்டு முதன்மையான இரண்டு பயன்களைப் பரிந்துரைக்கின்றனர்: விளக்கத் தன்மை கொண்டவை மற்றும் பரிந்துரைப்பு விதிகள் ரீதியானவை ஆகியனவாகும்.

விளக்கத் தன்மை கொண்டவை[தொகு]

மூன்று நிலைகளை உடைய செண்டிபேட் விளையாட்டு

உண்மையான மனிதர்கள் எவ்வாறு நடந்துகொள்வார்கள் என்று நமக்குத் தெரிவிப்பதே அனைவருமறிந்த முதல் பயனாகும். சில கல்வியாளர்கள் விளையாட்டுகளின் சமநிலையைக் கண்டுபிடிப்பதன் மூலம் அவர்களால் ஆய்வு செய்யப்படும் அந்த விளையாட்டில் வருவதைப் போன்ற சந்தர்ப்பங்களை எதிர்கொள்ளும் போது உண்மையான சராசரி மனிதர்கள் எவ்வாறு நடந்துகொள்வார்கள் என்பதை கணிக்க முடியும் என்று நம்புகின்றனர். விளையாட்டுக் கொள்கையின் இந்தக் குறிப்பிட்ட கோணக் கருத்து சமீபத்தில் விமர்சனத்திற்குட்பட்டுள்ளது. கோட்பாட்டாளர்கள் கருத்தில் கொண்ட கருதுகோள்கள் பெரும்பாலும் மீறப்படுவதால் அவை முதலில் தவறாக விமர்சிக்கப்பட்டன. விளையாட்டுக் கோட்பாட்டாளர்கள் போட்டியாளர்கள் தங்கள் வெற்றியினை அதிகப்படுத்தும் விதத்திலேயே செயல்படுவார்கள் என்று கருதலாம் (ஹோமோ எகனாமிக்கஸ் மாதிரி). ஆனால் நடைமுறையில் மனித செயல்பாடுகள் பெரும்பாலும் இந்த மாதிரியினை விட்டு விலகலாம். இந்த நிகழ்விற்கான விளக்கங்கள் பல உள்ளன. பகுத்தறிவின்மை, கவனமாகக் கருத்தில் கொள்ளுதலுக்கான புதிய மாதிரிகள் அல்லது (பொதுநலத்தின் அம்சத்தைப் போன்ற) இன்னும் வேறுபட்ட நோக்கங்கள். விளையாட்டுக் கோட்பாட்டாளர்கள் இயற்பியலில் பயன்படுத்தப்படும் கருதுகோள்களுடன் தங்கள் கருதுகோள்களை ஒப்பிட்டு அதற்கேற்றவாறு மறுசெயல்புரிகின்றனர். இவ்வாறு அவர்களது அனுமானம் எப்போதும் பொருந்துவதாக இருப்பதில்லை. அவர்கள் விளையாட்டுக் கொள்கையை இயற்பியல் விஞ்ஞானிகள் பயன்படுத்தும் மாதிரிகளின் இலட்சிய நெருங்கிய அம்சப் பண்பொத்தவையாகக் கருதலாம். இருப்பினும் தனிப்பட்ட நபர்கள் சமநிலை செயலுத்திகளின் படி செயல்படுவதில்லை என்பதை சில சோதனைகள் விளக்கிக் காட்டியுள்ளதால் விளையாட்டுக் கொள்கையின் இவ்வகையான பயன்பாடானது கூடுதல் விமர்சனத்திற்குள்ளானது. எடுத்துக்காட்டு நிகழ்வாக, பூரான் விளையாட்டு, கெஸ் 2/3 ஆஃப் த எவ்ரேஜ் விளையாட்டு மற்றும் டைரக்டர் கேம் ஆகிய விளையாட்டுகளில் நபர்கள் வழக்கமாக நாஷ் சமநிலையில் செயல்படுவதில்லை. இந்த சோதனைகளின் முக்கியத்துவம் குறித்த விவாதங்கள் இன்னும் தொடர்கின்றன.[2]

மாற்றாக சில ஆசிரியர்கள் நாஷ் சமநிலையானது மனிதக் குழுக்களுக்கான கணிப்புகளை வழங்குவதில்லை என வாதிடுகின்றனர். அதற்கு மாறாக நாஷ் சமநிலையில் இருக்கும் குழுக்கள் ஏன் அந்நிலையில் உள்ளன என்பதற்கான விளக்கத்தை வழங்குகின்றனர். இருப்பினும் குழுக்கள் இந்தப் புள்ளியை எவ்வாறு அடைகின்றன என்பது இன்றும் பதிலளிக்கப்படாத கேள்வியாகவே உள்ளது.

இந்த சிக்கல்களைத் தீர்ப்பதற்காக சில விளையாட்டுக் கோட்பாட்டாளர்கள் பரிணாமவியல் விளையாட்டுக் கொள்கையின் பக்கம் திரும்பியுள்ளனர். இந்த மாதிரிகள் போட்டியாளர்களின் கோணத்திலிருந்து பகுத்தறிவு அல்லது கட்டுப்படுத்தப்பட்ட மெய்த்தன்மை ஆகிய இரண்டையுமே கருத்தில் கொண்டு அமையவில்லை. அதன் பெயர் பரிணாமவியல் விளையாட்டுக் கொள்கை என இருந்தாலும் அது இயற்கைத் தேர்வு எனும் கருத்தை உயிரியல் ரீதியாக கருத்தில் கொண்டிருக்கவில்லை. பரிணாமவியல் விளையாட்டுக் கொள்கையானது உயிரியல் மற்றும் கலாச்சார பரிணாமத்தின் மாதிரிகளையும் சேர்த்துள்ள ஒரு அம்சமாக உள்ளது. மேலும் தனிநபர் கற்றல் தொடர்பான மாதிரிகளையும் கொண்டுள்ளது (எடுத்துக்காட்டாக கற்பனை விளையாட்டு இயக்கவியல்).

பரிந்துரைப்பு விதிகள் ரீதியானவை அல்லது சரியான நடத்தை பகுப்பாய்வு[தொகு]

Cooperate Defect
Cooperate -1, -1 -10, 0
Defect 0, -10 -5, -5
The Prisoner's Dilemma

மற்றொரு புறம் விளையாட்டுக் கொள்கையானது மனிதர்களின் நடத்தைக்கான கணிப்புக் கருவியாகக் கருதவில்லை. ஆனால் மனிதர்கள் எவ்வாறு நடந்துகொள்வார்கள் என்பது பற்றிய பரிந்துரையைக் கொடுக்கும் ஒன்றாகவே கருதுகின்றனர். ஒரு விளையாட்டின் நாஷ் சமநிலையானது மற்ற போட்டியாளர்களின் செயல்களுக்கான சிறந்த பதில்வினையைக் கொண்டுள்ளது என்பதால் நாஷ் சமநிலையின் ஒரு பகுதியாக உள்ள உத்தியின் படி செயல்படுவது சரியானதாக உள்ளது. இருப்பினும் விளையாட்டுக் கொள்கைக்கான இந்தப் பயன்பாடும் விமர்சனத்திற்குள்ளாகியுள்ளது. முதலில் மற்றொருவர் சமநிலையில் இல்லாத வகையில் செயல்பட வேண்டும் என ஒருவர் எதிர்பார்த்தால் அவர் சமநிலையில் இல்லாத வகையில் செயல்படுவது என்பது சரியானதாக இல்லாமல் போகலாம். எடுத்துக்காட்டுக்கு கெஸ் 2/3 ஆஃப் த எவ்ரேஜ் என்பதைக் காண்க.

இரண்டாவதாக ப்ரிசனர்ஸ் டைலெம்மா விளையாட்டு மற்றொரு எதிர்விதமான எடுத்துக்காட்டை வழங்குகிறது. ப்ரிசனர்ஸ் டைலெம்மா விளையாட்டில் ஒவ்வொரு போட்டியாளாரும் அவரது சுய ஆர்வத்தின் படி செயல்படும் போது அவ்வாறு சுய ஆர்வத்தின் படி செயல்படாமல் இருந்திருந்தால் அடையடக்கூடிய விளைவுகளை விட மோசமான விளைவுகளையே அடைகின்றனர்.

உயிரியல்[தொகு]

Hawk Dove
Hawk v−c, v−c 2v, 0
Dove 0, 2v v, v
The hawk-dove game

பொருளாதாரத்தைப் போலன்றி உயிரியலில் உள்ள விளையாட்டுகளின் விளைவுப்புள்ளிகள் அவற்றின் பொருத்தத் தன்மைக்கு உரியதாகவே புரிந்துகொள்ளப்படுகின்றன. கூடுதலாக மெய்த்தன்மையின் நம்பிக்கைக்கு உரியதாக உள்ள சமநிலைகள் சிறிதளவே கவனத்தில் கொள்ளப்பட்டு வந்தன. அதற்கு மாறாக பரிணாமவியல் விசைகளால் கட்டுப்படுத்தப்படும் சமநிலைகளே அதிகமாக கவனத்தில் கொள்ளப்பட்டன. உயிரியலில் காணப்படும் பிரபலமான சமநிலை பரிணாமவியல் நிலைத்தன்மை உத்தி (அல்லது ESS) எனப்படுகிறது. அது (Smith & Price 1973) ஆம் ஆண்டில் அறிமுகப்படுத்தப்பட்டது. இருப்பினும் முதலில் அதன் நோக்கம் நாஷ் சமநிலையின் உளவியல் ரீதியான அவசியங்கள் எதையும் கருத்தில் கொள்வதாக இல்லை. ESS ஒவ்வொன்றும் ஒரு நாஷ் சமநிலையாகும்.

உயிரியலில் விளையாட்டுக் கொள்கையானது பல்வேறு வித்தியாசமான நிகழ்வுகளைப் புரிந்துகொள்ள பயன்படுத்தப்பட்டு வருகிறது. அது முதலில் தோராயமான 1:1 பாலின விகிதங்களின் பரிணாமத்தை (மற்றும் நிலைத்தன்மையை) விளக்கப் பயன்படுத்தப்பட்டது. (Fisher 1930)தங்கள் பேரக்குழந்தைகளின் எண்ணிக்கையை அதிகரிக்க முயற்சிப்பவர்களாகக் கருதப்படக்கூடிய நபர்களின் மீது செயல்படும் பரிணாமவியல் விசைகளின் ஒரு விளைவே இந்த 1:1 பாலின விகிதமாகும் எனக் கூறப்படுகிறது.

கூடுதலாக உயிரியலாளர்கள் விலக்குகளின் தகவல்தொடர்பின் படிப்படியான வளர்ச்சியை விளக்க பரிணாமவியல் விளையாட்டுக் கொள்கை மற்றும் ESS ஆகியவற்றைப் பயன்படுத்தினர்(Harper & Maynard Smith 2003). சமிக்ஞை செய்யும் விளையாட்டுகள் மற்றும் பிற தகவல்தொடர்பு உள்ள விளையாட்டுகளைப் பகுப்பாய்வு செய்வதன் மூலம், விலங்குகளிடையே தகவல்தொடர்பு எவ்வாறு வளர்ச்சியடைந்தது என்பது பற்றிய கருத்து கிடைத்துள்ளது. எடுத்துக்காட்டுக்கு, இரையின விலங்குகள் பல ஒன்றாகச் சேர்ந்து வேட்டையாடும் விலங்கைத் தாக்கும் நிகழ்வான பல விலங்கினங்களில் காணப்படும் இந்தத் தாக்கும் குணமானது, ஒருங்கிணைவில் தன்னிச்சையாக ஏற்படும் எழுச்சிக்கு ஓர் எடுத்துக்காட்டாகக் கருதப்படுகிறது.

நாடுகளுக்கிடையேயான பிரதேசச் சண்டை தொடர்பான குணத்தைப் பகுப்பாய்வு செய்ய கோழிச் சண்டை விளையாட்டுகளை உயிரியலாளர்கள் பயன்படுத்தினர். [சான்று தேவை]

மேய்னர் ஸ்மித், தனது எவல்யூஷன் அண்ட் த தியரி ஆஃப் கேம்ஸ் என்னும் புத்தகத்தின் முன்னுரையில், இவ்வாறு எழுதுகிறார்: "[p]தோராயமாக, விளையாட்டுக் கொள்கையானது அதன் உருவாக்க நோக்கமாக இருந்த பொருளாதாரத்தின் குணாம்சங்களைக் காட்டிலும் உயிரியல் துறைக்கு எளிதாகப் பொருந்தும் வகையில் மாற்றம் பெற்றுவிட்டது". பரிணாமவியல் விளையாட்டுக் கொள்கை இயற்கையில் உள்ள மிகவும் சீரற்ற தன்மையுடன் காணப்படும் நிகழ்வுகளை விளக்கப் பயன்படுத்தப்பட்டுவந்தது.[3]

உயிரியல் சார்ந்த பொதுநலத் தன்மை என்பது அது போன்ற ஒரு நிகழ்வாகும். இதுவே தனக்கு தீங்கை விளைவிக்கக்கூடிய ஒரு உயிரிக்கே மற்றொரு உயிரி நன்மை செய்யும் வகையில் செயல்படும் விதமான ஒரு சூழ்நிலையாகும். இது பொதுநலத் தன்மை தொடர்பாக நிலவிவந்த வழக்கமான நம்பிக்கைகளிலிருந்து மிகவும் வேறுபட்டதாகும். ஏனெனில் இது போன்ற செயல்கள் விழிப்புநிலையில் செய்யப்படுவதில்லை. ஆனால் ஒட்டுமொத்த சரியான தன்மையையும் இந்தப் பரிணாமவியல் தகவமைப்புகள் அதிகரிப்பதாகத் தோன்றுகிறது. இதற்கான எடுத்துக்காட்டுகளை இரவு வேட்டையில் தமக்குக் கிடைத்த இரத்தத்தை உணவு கிடைக்காத தங்கள் இனத்தாருக்கு வாயிலிருந்து எதிர்க்களிப்பின் மூலம் ஊட்டும் குணமுள்ள நோய்பரப்பும் வௌவால்கள் முதல் தங்கள் வாழ்நாள் முழுதும் ராணி தேனீக்காகவே உழைத்து வாழ்வில் ஒரு முறையும் கலவியில் ஈடுபடாத பணியாள் தேனீக்கள் வரை, தனது உயிருக்கு ஆபத்து ஏற்படும் சூழ்நிலையிலும் தனது கூட்டாளிகளுக்கு வேட்டையாடும் ஒரு மிருகம் வருவதை அறிவித்து எச்சரிக்கும் வெர்வெட் குரங்கு வரையிலுள்ள பல இனங்களில் காணலாம்.[4] இந்த செயல்பாடுகள் அனைத்தும் ஒரு இனத்தின் தக்கதாக இருக்கும் தன்மையை அதிகரிக்கின்றன. ஆனால் அது ஒரு தனி விலங்கு ஆபத்துக்குட்பட்டே நடக்கின்றன.

பரிணாமவியல் விளையாட்டுக் கொள்கை இரத்த சம்பந்தம் தொடர்பான தேர்ந்தெடுத்தல் என்னும் கருத்தைக் கொண்டு இந்தப் பொதுநலத் தன்மையை விளக்குகிறது. இவ்வாறு பொதுநலத் தன்மை கொண்ட விலங்குகள் அவை உதவும் பிற விலங்குகளிலிருந்து வேறுபட்டு நடத்தப்படும். அவை தமது சொந்தங்களால் கனிவாக நடத்தப்படும். ஹாமில்டன் விதி c<b*r என்ற சமன்பாட்டைக் கொண்டு இந்தத் தேர்ந்தெடுத்தலுக்குப் பின்னாலுள்ள பரிணாமவியல் பகுத்தறிவை விளக்குகிறது. இதில் பொதுநலத் தன்மை கொண்ட விலங்குக்கான செலவானது ( c ), நன்மை பெறுபவர் பெறுகின்றன நன்மை ( b ) மற்றும் எந்த அளவுக்கு சொந்தம் நெருக்கமானது என்பதைக் குறிக்கும் உறவுக் கெழு ( r ) ஆகியவற்றின் பெருக்கற்பலனை விடக் குறைவாகவே இருக்க வேண்டும். மிகவும் நெருங்கிய உறவான இரு உயிர்கள் இந்த பொதுநலத் தன்மையினால் நிகழ்வும் நிகழ்வுகளின் அதிகரிப்பிற்குக் காரணமாக இருக்கின்றன. ஏனெனில் அவை இரண்டுக்கும் ஒரே வகையான அல்லீல்கள் இருக்கின்றன. அதாவது பொதுநலத் தன்மை கொண்ட உயிரியானது (அதன் துணைத்தோன்றி உயிரின் வாழ்தலின் மூலம்) தனது நெருங்கிய உயிரியின் அல்லீல்களைப் பெற்றுள்ளது நிச்சயம் எனில் அதற்கு அதே எண்ணிக்கையிலான அல்லீல்கள் கிடைக்கப்பெற்றுள்ளதால் அது தனது துணைத்தோன்றி உயிரையே இந்தப் பொதுநலத் தன்மைக்காக விட்டுக்கொடுக்க முடியும். உடன் பிறந்த உயிரிக்கு உதவுவதற்கான உதவுதல் கெழுவானது ½ ஆகும். ஏனெனில் அந்த இரு உயிரிகளும்தனது உடன் பிறப்பு உயிரிகளின் அல்லீல்களில் ½ கொண்டிருக்கும். உடன் பிறந்த உயிரியின் துணைத்தோன்றி உயிரியானது பெரிதாகும் வரை வாழ்கிறது என்பது நிச்சயமானால் பொதுநலத் தன்மை கொண்ட அந்தத் தனி உயிரியானது மேலும் துணைத்தோன்றி உயிர்களை உருவாக்க வேண்டிய அவசியம் இல்லாமல் போகிறது.[4] இதே போல் இந்தக் கெழுவானது செயல்படும் களத்தின் எல்லையையே பெரிதும் சார்ந்துள்ளது. எடுத்துக்காட்டுக்கு யாருக்காக நன்மை புரிய வேண்டும் என்பதைத் தேர்வு செய்வதென்பது, உறவான உயிரிகள் மட்டுமன்றி அனைத்து உயிர்வாழிகளையும் உள்ளடக்கியுள்ளது. விளையாட்டுக் களத்திலுள்ள வேற்றுமைப் பண்பிற்கு அனைத்து மனிதர்களிடையேயும் உள்ள இந்த வேறுபாடானது தோராயமாக 1% மட்டுமே காரணமாக அமைவதாகக் கருதுகிறோம், சிறிய புலத்தில் அமைகின்ற இதற்கான கெழு ½ ஆனது 0.995 என ஆகிறது. அதே போல் மரபியல் சார்ந்த இயல்பைத் தவிர்த்து பிற தகவல்கள் (எ.கா. அதிசனனவியல், மதம், அறிவியல் இன்னும் பல) விளையாட்டுப் புலமானது பெரியதாகும் மற்றும் முரண்பாடுகள் குறையும் நேரத்தில் இருந்தபடியே நிலைத்திருக்கின்றன எனக் கருதப்படுகிறது.

கணினி அறிவியலும் தர்க்கமும்[தொகு]

விளையாட்டுக் கொள்கை இப்போது தர்க்கம் மற்றும் கணினி அறிவியல் துறைகளில் மிகவும் முக்கியமான பங்கை வகிக்கிறது. பல தர்க்கக் கோட்பாடுகள் அவற்றின் அடிப்படையாக விளையாட்டுப் பொருள்கோள் கருத்துகளைக் கொண்டுள்ளன. மேலும் கணினி அறிவியலாளர்கள் இடைத்தொடர்பு கொள்ளத்தக்க கணினி செயல்பாடுகளை மாதிரியாக்கம் செய்ய விளையாட்டுகளைப் பயன்படுத்தியுள்ளனர். மேலும் விளையாட்டுக் கொள்கையானது பல-கருவி முறைமைகளுக்கான கோட்பாட்டு அடிப்படையையும் வழங்குகிறது.

இது மட்டுமின்றி ஆன்லைன் வழிமுறைகளிலும் விளையாட்டுக் கொள்கையானது மிகவும் முக்கியமான பங்கை வகித்து வந்தது. குறிப்பாக, k-சர்வர் சிக்கலானது முற்காலத்தில் நகரும் செலவுகளைக் கொண்ட விளையாட்டுகள் மற்றும் கோரிக்கை-பதில் விளையாட்டுகள் எனக் குறிக்கப்பட்டது (Ben David, Borodin & Karp et al. 1994). சீரற்றதாக்கப்பட்ட வழிமுறைகளின் குறிப்பாக ஆன்லைன் வழிமுறைகளின் கணிப்பியல் சிக்கல் தன்மையிலுள்ள எல்லைகளை நிரூபிப்பதற்கான விளையாட்டுக் கொள்கை ரீதியான உத்தியாவோ தத்துவம் ஆகும்.

வழிமுறையியல் விளையாட்டுக் கொள்கைத் துறையானது சிக்கலான தன்மை மற்றும் வழிமுறை வடிவமைப்பு ஆகியவற்றுக்கான கணிணி அறிவியல் ரீதியான கருத்துக்களை விளையாட்டுக் கொள்கை மற்றும் பொருளாதாரக் கோட்பாடு ஆகியவற்றுடன் ஒருங்கிணைக்கிறது. இணையத்தின் வளர்ச்சியால் விளையாட்டுகள், சந்தைகள், கணிப்பியல் ரீதியான ஏலங்கள், இரு முனையிடை (பியர்-டு-பியர்) முறைமைகள் மற்றும் பாதுகாப்பு மற்றும் தகவல் சந்தை ஆகியவற்றிலுள்ள சமநிலையைக் கண்டறிவதற்கான வழிமுறைகள் உருவாவது ஊக்குவிக்கப்பட்டது.[5]

தத்துவம் =[தொகு]

Stag Hare
Stag 3, 3 0, 2
Hare 2, 0 2, 2
Stag hunt

விளையாட்டுக் கொள்கையானது தத்துவத்திலும் பல வகையில் பயன்படுத்தப்பட்டுள்ளது. W.V.O. Quine (1960, 1967), Lewis (1969) இன் இரண்டு வெளியீடுகளுக்கு பதிலளிக்கும் விதத்தில் [28] மரபின் தத்துவ ரீதியான அம்சத்தை உருவாக்க விளையாட்டுக் கொள்கையைப் பயன்படுத்தினார். அவ்வாறு செய்கையில் அவர் பொதுவான அறிவுத்திறனில் முதல் பகுப்பாய்வை நிகழ்த்தி அதனை விளையாட்டு மற்றும் ஒருங்கியக்க விளையாட்டுகளைப் பகுப்பாய்வு செய்வதில் பயன்படுத்தினார். மேலும் அவர் முதலில் சிக்னலிங் விளையாட்டுகளின் அம்சங்களைக் கொண்டு இதன் பொருளைப் புரிந்துகொள்ளலாம் எனப் பரிந்துரைத்தார். பிற்காலத்திய இந்தப் பரிந்துரையானது லூயிஸ் (Skyrms (1996), Grim, Kokalis, and Alai-Tafti et al. (2004)) போன்ற தத்துவ அறிஞர்களால் பின்பற்றப்பட்டது. விளையாட்டுக் கோட்பாட்டு ரீதியான அம்சத்திற்கான Lewis (1969) இன் பங்களிப்பைத் தொடர்ந்து உல்மேன் மார்கலிட் (1977) மற்றும் பிச்சியெரி (2006) ஆகியோர் சமூக சராசரி அம்சங்களுக்கான கோட்பாடுகளை உருவாக்கினர். அவை தம்மை பல வகையான நோக்கம் கொண்ட விளையாட்டிலிருந்து ஒருங்கியக்க விளையாட்டாக மாறுவதன் விளைவாக விளையும் நாஷ் சமநிலையில் இருப்பதாக வரையறுக்கின்றன.[6]

விளையாட்டுக் கொள்கையானது தத்துவவாதிகளை இடைத்தொடர்புத் தன்மை சார் அறிவுத் தத்துவவியலைச் சார்ந்து சிந்திக்கும் வகையில் மாற்றியது: அதாவது ஒரு குழுவில் உள்ள மக்கள் பொதுவான நம்பிக்கைகள் அல்லது அறிவைக் கொண்டிருந்தால் என்ன பொருள் மற்றும் ஏஜெண்ட்டுகளின் இடைசெயல்களினால் விளையும் சமூக அளவிலான விளைவுகளுக்கு இந்த அறிவால் என்ன விளைவுகள் ஏற்படும் என்றவாறு சிந்திக்கும்படி மாற்றியது. இத்துறையில் பணிபுரிந்த தத்துவவாதிகளில் பிச்சியெரி (1989, 1993),[7] ஸ்கிர்ம்ஸ் (1990),[8] மற்றும் ஸ்டால்னேக்கர் (1999) ஆகியோரும் அடங்குவர்.[9]

நன்னெறி தர்மத்தில், தாமஸ் ஹாப்ஸ் தொடங்கிய பணித்திட்டத்தைப் பின்பற்ற முயற்சித்துள்ளனர். அது சுய-ஆர்வத்திலிருந்து நன்னெறிகளை வருவிப்பது பற்றியதாகும். ப்ரிசனர்ஸ் டைலெம்மா போன்ற விளையாட்டுகள் நன்னெறி மற்றும் சுய-ஆர்வத்திற்கிடையே தோற்ற அளவிலான முரண்பாட்டைக் கொண்டுள்ளதால், சுய-ஆர்வத்திற்குத் தேவைப்படும் ஒருங்கியக்கமானது இந்தப் பணித்திட்டத்திற்கு ஒரு முக்கியக் கூறாக உள்ளது என்பதை விளக்கவும் முயற்சித்துள்ளனர். இந்தப் பொது உத்தியானது அரசியல் தத்துவத்தில் பொது சமூக ஒப்பந்தக் கருத்துக்கோணமாகும் (எடுத்துக்காட்டுகளுக்கு Gauthier (1986) மற்றும் Kavka (1986) ஆகியவற்றைக் காண்க.[10]

பிற ஆசிரியர்கள் நன்னெறி மற்றும் அது சார்ந்த விலங்குகள் நடத்தை ஆகியவை பற்றி வளர்ந்துவரும் மனித மனப்போக்குகளை விளக்க பரிணாமவியல் விளையாட்டுக் கொள்கையைப் பயன்படுத்த முயற்சித்துள்ளனர். நன்னெறி தொடர்பான வளர்ந்துவரும் மனப்போக்குகளுக்கான விளக்கம் வழங்கும் நோக்கத்தில், இந்த ஆசிரியர்கள் ப்ரிசனர்ஸ் டைலெம்மா, ஸ்டாக் ஹண்ட் மற்றும் நாஷ் பார்கெயினிங் விளையாட்டு ஆகியவற்றை கவனமாக ஆய்வு செய்து வருகின்றனர் (காண்க, எ.கா., Skyrms (1996, 2004) மற்றும் Sober and Wilson (1999)).

விளையாட்டுக் கொள்கையின் சில பகுதிகளில் கருத்தில் கொள்ளப்படும் சில கருதுகோள்கள் தத்துவத்தில் கேள்விக்குள்ளாக்கப்பட்டு சவால் விடப்பட்டுள்ளன. உளவியல் சார்ந்த தன்முனைப்பியலானது சுய-ஆர்வமாகக் குறைக்கப்பட்ட பகுத்தறிவு என்பது தத்துவவாதிகளுக்கிடையே உள்ள விவாதத்திற்குரிய கருத்தாகவே உள்ளது. (உளவியல் சார்ந்த தன்முனைப்பியல்#விமர்சனம் என்பதைக் காண்க )

விளையாட்டுகளின் வகைகள்[தொகு]

ஒருங்கியக்கத் தன்மை கொண்டவை அல்லது ஒருங்கியக்கத் தன்மை இல்லாதவை[தொகு]

ஒரு விளையாட்டில் போட்டியாளர்கள் கட்டுப்படுத்தும் தன்மையுள்ள ஒப்புதல்களை ஏற்படுத்திக்கொள்ள முடியாவிட்டால் அது ஒருங்கியக்க விளையாட்டாகும். எடுத்துக்காட்டாக சட்ட முறைமைகள் அவர்கள் கொடுத்த வாக்குறுதியைப் பின்பற்றியே நடந்துகொள்ளுமாறு நிர்ப்பந்திக்கின்றன. ஆனால் ஒருங்கியக்கத் தன்மை இல்லாத விளையாட்டுகளில் இது சாத்தியமல்ல.

பெரும்பாலும் ஒருங்கியக்கமுள்ள விளையாட்டுகளில் போட்டியாளர்கள் தகவல்தொடர்புகொள்வது அனுமதிக்கப்படுகிறது, ஆனால் ஒருங்கியக்கத் தன்மை இல்லாத விளையாட்டுகளில் அது அனுமதிக்கப்படுவதில்லை. இருகூறு தேர்வளவையினடிப்படையிலான இந்த வகைப்பாடு நிராகரிக்கப்பட்டது (Harsanyi 1974).

இந்த இரு வகை விளையாட்டுகளில் ஒருங்கியக்கத் தன்மையற்ற விளையாட்டுகளால் சூழ்நிலைகளை மிகத் தெளிவான அளவில் மாதிரியாக்கம் செய்ய முடியும். இதனால் அவை துல்லியமான முடிவுகளையும் கொடுக்கின்றன. ஒருங்கியக்கத் தன்மை கொண்ட விளையாட்டுகள் பெரிய அளவில் விளையாட்டையே மையமாகக் கொண்டது. இந்த இரண்டு அணுகுமுறைகளையும் இணைக்க குறிப்பிடத்தக்க அளவு முயற்சிகள் மேற்கொள்ளப்பட்டுள்ளன. நாஷ் திட்டம் எனப்படும் ஒன்று[தெளிவுபடுத்துக] ஒருங்கியக்கத் தன்மை கொண்ட தீர்வுகளில் பலவற்றை ஒருங்கியக்கத் தன்மையற்ற சமநிலைகளாக நிறுவியுள்ளது.

கலப்பின விளையாட்டுகளில் ஒருங்கியக்கத் தன்மை கொண்ட மற்றும் ஒருங்கியக்கத் தன்மை அல்லாத இருவிதமான கூறுகளும் உள்ளன. எடுத்துக்காட்டுக்கு, போட்டியாளர்களின் சேர்ப்பு ஒருங்கியக்க விளையாட்டில் உருவாக்கப்படுகிறது, ஆனால் போட்டியாளர்கள் விளையாடும் போது ஒருங்கியக்கமற்ற விதத்திலேயே விளையாடுகின்றனர்.

சமச்சீர் தன்மை கொண்டவை மற்றும் சமச்சீரற்ற தன்மையற்றவை[தொகு]

E F
E 1, 2 0, 0
F 0, 0 1, 2
An asymmetric game

ஒரு குறிப்பிட்ட உத்தியைக் கையாள்வதற்கான விளைவுப்புள்ளிகள் விளையாடுபவரைச் சாராமல் பயன்படுத்தப்படும் பிற உத்திகளைச் சார்ந்தே இருக்கும்பட்சத்தில் அது சமச்சீரான விளையாட்டு எனப்படும். உத்திகளுக்கான விளைவுப்புள்ளிகளை மாற்றாமல் போட்டியாளர்களின் அடையாளங்களை மாற்ற முடியுமெனில் அது சமச்சீரான விளையாட்டு எனப்படும். பொதுவாக ஆய்வு செய்யப்படும் 2×2 விளையாட்டுகளில் பெரும்பாலானவை சமச்சீரானவையாகும். சிக்கன், ப்ரிசனர்ஸ் டைலெம்மா மற்றும் ஸ்டாக் ஹண்ட் ஆகியவற்றின் தரநிலையான விளக்கங்களுமே சமச்சீர் விளையாட்டுகளாகும். சில குறிப்பிட்ட சமச்சீர் தன்மையற்ற விளையாட்டுகளையும் இவ்வகை விளையாட்டுகளுக்கு எடுத்துக்காட்டுகளாக சில கல்வியாளர்கள் கருதுகின்றனர். இந்த விளையாட்டுகள் ஒவ்வொன்றிலும் மிகவும் பெரும்பாலான விளைவுப்புள்ளிகள் சமச்சீர் தன்மை கொண்டவையாகவே உள்ளன.

விளையாடும் இரண்டு போட்டியாளர்களுக்குமே ஒத்த உத்தித் தொகுப்புகள் இல்லாத வகையிலான விளையாட்டுகளே பொதுவாக ஆய்வு செய்யப்படும் சமச்சீர் தன்மையற்ற விளையாட்டுகளாகும். எடுத்துக்காட்டுக்கு அல்டிமேட்டம் விளையாட்டும் அதே போல் டிக்டேட்டர் விளையாட்டும் ஒவ்வொரு போட்டியாளருக்கும் வெவ்வேறு உத்திகளைக் கொண்டுள்ளன. ஒவ்வொரு போட்டியாளருக்கும் ஒத்த தன்மையுள்ள உத்திகளைக் கொண்டிருக்கும் அதே வேளையில் ஒரு விளையாட்டு சமச்சீரற்ற தன்மை கொண்ட ஒன்றாக இருப்பதற்கான சாத்தியமும் உள்ளது. எடுத்துக்காட்டுக்கு வலப்பக்கம் காண்பிக்கப்பட்டிருக்கும் விளையாட்டு சமச்சீரற்ற தன்மை கொண்டது. இருப்பினும் இரு போட்டியாளருக்கும் ஒத்த தன்மையுள்ள உத்தித் தொகுப்புகளைக் கொண்டுள்ளது.

பூச்சியக் கூடுதல் விளையாட்டுகள் மற்றும் பூச்சியக் கூடுதலற்ற விளையாட்டுகள்[தொகு]

A B
A –1, 1 3, –3
B 0, 0 –2, 2
A zero-sum game

பூச்சியக் கூடுதல் விளையாட்டுகள் என்பவை மாறாத கூடுதல் விளையாட்டுகளில் ஒரு வகைச் சிறப்புடையவையாகும். அவற்றில் போட்டியாளர்களின் விருப்பத் தேர்வானது கிடைக்கக்கூடிய ஆதாரங்களை அதிகரிக்கவோ குறைக்கவோ முடியாது. பூச்சியக் கூடுதல் விளையாட்டுகளில் அனைத்து போட்டியாளர்களுக்குமான இலாபமானது ஒவ்வொரு உத்தி சேர்க்கைகளுக்கும் பூச்சியத்துடன் சேர்க்கப்படுகிறது (முறைசார விதத்தில் கூறுவதானால் ஒரு போட்டியாளர் மற்றவர் எவ்வளவு செலவடைகின்றாரோ அவ்வளவே மற்றவர் பெறுகிறார்). போக்கர் ஒரு பூச்சியக் கூடுதல் விளையாட்டை (ஹௌஸ்களின் வெட்டுப்படுதலுக்கான சாத்தியக்கூறுகளைப் புறக்கணித்தபட்சத்தில்) விளக்குகிறது. ஏனெனில் இதில் ஒருவர் பெறுவது மிகச் சரியாக, மற்றொருவர் இழந்ததற்குச் சமமாகவே உள்ளது. மேட்ச்சிங் பென்னிஸ் மற்றும் கோ மற்றும் சதுரங்கம் உள்ளிட்ட பெரும்பாலான பழம் போர்டு விளையாட்டுகள் ஆகியவையும் பிற பூச்சியக் கூடுதல் விளையாட்டுகளில் அடங்கும்.

விளையாட்டுக் கொள்கையாளர்கள் ஆய்வு செய்த விளையாட்டுகளில் பெரும்பாலானவை (பிரபலமான ப்ரிசனர்ஸ் டைலெம்மா உட்பட) பூச்சியக் கூடுதலற்ற விளையாட்டுகளாகும். ஏனெனில் சில விளைவு முடிவுகள் பூச்சியத்தை விடக் குறைவான அல்லது அதிகமானவையாக உள்ளன. எளிமையாகக் கூறுவதானால் பூச்சியக் கூடுதலற்ற விளையாட்டுகளில் ஒரு போட்டியாளர் பெறும் ஆதாயம் மற்றொரு போட்டியாளருடன் தொடர்புடையதாக இருக்க வேண்டிய அவசியம் இல்லை.

மாறாக் கூடுதல் விளையாட்டுகள் என்பவை திருட்டு, சூது போன்றவை தொடர்பானவை, ஆனால் வர்த்தகத்திலிருந்து இலாப சாத்தியங்களுள்ள அடிப்படைப் பொருளாதார சூழ்நிலைகளுடன் தொடர்புடையவை அல்ல. எந்த ஒரு விளையாட்டையும், (பெரும்பாலும் "போர்டு" எனப்படும்) ஒரு போலி போட்டியாளரைச் சேர்ப்பதன் மூலம் (சமச்சீரற்ற தன்மை கொண்டதாகவே இருக்க வாய்ப்புள்ள) பூச்சியக் கூடுதல் விளையாட்டாக மாற்றுவது சாத்தியமே, அந்த போலி போட்டியாளாரின் இழப்புகள் போட்டியாளர்களின் நிகர வெற்றிகளை ஈடுசெய்வதாக இருக்கும்.

ஒருநேர நிகழ் விளையாட்டுகள் மற்றும் தொடர் நிகழ் விளையாட்டுகள்[தொகு]

ஒருநேர நிகழ் விளையாட்டுகளில், போட்டியாளர்கள் ஒரே நேரத்தில் செயல்படுவர் அல்லது அவர்கள் ஒரே நேரத்தில் செயல்படாவிட்டால், பின்னதாகச் செயல்படும் போட்டியாளருக்கு முதலில் செயல்படும் போட்டியாளர்களைப் பற்றித் தெரியாது (இதனால் இது மொத்தத்தில் இவர்களை ஒரு நேர செயல்படுபவர்களாகக் கருதச் செய்கிறது). தொடர் நிகழ் விளையாட்டுகளில் (அல்லது செயல் விளையாட்டுகள்) பின்னதாகச் செயல்படும் போட்டியாளருக்கு முதலில் செயல்படும் போட்டியாளர்களைப் பற்றி ஓரளவு தெரிந்திருக்கும். இது முன்னதாக விளையாடிய போட்டியாளர்களைப் பற்றிய சரியான தகவலாக இருக்க வேண்டிய அவசியமில்லை. அது மிகக் குறைந்த அளவு அறிவாகவும் இருக்கலாம். எடுத்துக்காட்டுக்கு முன்னதாக விளையாடிய போட்டியாளர் ஒரு குறிப்பிட்ட செயலைச் செய்யவில்லை என்பதை ஒரு போட்டியாளர் அறியலாம், வாய்ப்புள்ள மற்ற செயல்களில் அந்த போட்டியாளர் எதைச் செயல்படுத்தினார் என்பது தெரிந்திருக்காது.

மேலே விவாதிக்கப்பட்ட வேறுபட்ட விளக்கப்படுத்தலே ஒரு நேர நிகழ் விளையாட்டுகளுக்கும் தொடர் நிகழ் விளையாட்டுகளுக்கும் உள்ள வேறுபாடாகும். பெரும்பாலும் ஒரு நேர நிகழ் விளையாட்டுகளை விளக்க இயல்பான வடிவங்களே பயன்படுத்தப்படுகின்றன. தொடர் நிகழ் விளையாட்டுகளை விளக்க விரிவான வடிவம் பயன்படுத்தப்படுகிறது. இருப்பினும் தொழில்நுட்ப ரீதியாக இது கண்டிப்பான விதியல்ல.

சரியான மற்றும் சரியற்ற தகவல்[தொகு]

சரியற்ற தகவலைக் கொண்டுள்ள ஒரு விளையாட்டு (புள்ளியிடப்பட்ட கோடு போட்டியாளர் 2 இன் அறியாத தன்மையின் பகுதியைக் குறிக்கிறது)

தொடர் நிகழ் விளையாட்டுகளின் ஒரு முக்கிய துணைத் தொகுப்பானது சரியான தகவல்களைக் கொண்ட விளையாட்டுகளைக் கொண்டுள்ளது. ஒரு விளையாட்டில் அனைத்து போட்டியாளர்களும் பிற அனைத்து போட்டியாளர்களின் முந்தைய செயல்பாடுகளை அறிந்திருந்தால் அது சரியான தகவலைக் கொண்ட விளையாட்டாகும். இதனால் தொடர் நிகழ் விளையாட்டுகள் மட்டுமே சரியான தகவலைக் கொண்ட விளையாட்டுகளாக இருக்க முடியும். ஏனெனில் ஒரு நேர நிகழ் விளையாட்டுகளில் அனைத்து போட்டியாளர்களும் பிற அனைத்து போட்டியாளர்களின் செயல்பாடுகளை சரியாக அறிந்திருப்பதில்லை. விளையாட்டுக் கொள்கையில் ஆய்வு செய்யப்படும் விளையாட்டுகளில் பெரும்பாலானவை சரியான தகவலற்ற விளையாட்டுகளே ஆகும். இருப்பினும் அல்டிமேட்டம் விளையாட்டுகள் மற்றும் செண்டிப்பேட் விளையாட்டு ஆகியவை உள்ளிட்ட சரியான தகவலைக் கொண்ட விளையாட்டுகளுக்கான ஆர்வத்தைத் தூண்டும் எடுத்துக்காட்டுகளும் உள்ளன. சதுரங்கம், கோ, மன்கலா மற்றும் அரிமா ஆகியவையும் சரியான தகவலைக் கொண்ட விளையாட்டுகளில் அடங்கும்.

சரியான தகவலானது பெரும்பாலும் முழுமையான தகவலுடன் குழப்பிக்கொள்ளப்படுகிறது. ஏனெனில் அவை இரண்டும் கிட்டத்தட்ட ஒன்றே போன்ற கருத்துகளாக உள்ளன. முழுமையான தகவல் தெரிந்திருப்பது என்றால், அனைத்து போட்டியாளரும் மற்ற போட்டியாளர்களின் உத்திகள் மற்றும் விளைவுப்புள்ளிகள் அனைத்தையும் தெரிந்திருக்க வேண்டும். இதில் அவர்களின் செயல்களை அறிந்திருக்க வேண்டும் என்ற அவசியம் இல்லை.

முடிவிலா நீள விளையாட்டுகள்[தொகு]

பொருளியலாளர்கள் மற்றும் யதார்த்த உலக விளையாட்டுப் போட்டியாளர்களால் ஆய்வு செய்யப்பட்ட விளையாட்டுகள் குறிப்பிட்ட எண்ணிக்கையிலான செயல்பாடுகளோடு முடியக்கூடியவை. சுத்த கணிதவியலாளர்கள் அவ்வளவாகக் கட்டுப்படவில்லை. மேலும் கணவியல் கோட்பாட்டாளர்கள் குறிப்பாக அனைத்து செயல்பாடுகளும் முடிவடைந்த பின்னரும் கூட வெற்றி பெற்றவர் யாரென்பது (அல்லது பிற விளைவுப்புள்ளி) தெரியாமலே இருக்கக்கூடிய மற்றும் பல முடிவிலா எண்ணிக்கையிலான செயல்பாடுகளைக் கொண்டுள்ள விளையாட்டுகளைப் பற்றி ஆய்வு செய்தனர்.

அது போன்ற ஒரு விளையாட்டை சிறப்பாக எவ்விதத்தில் விளையாட வேண்டும் என்பது இதில் மையமாக இருப்பதில்லை. ஆனால் வெற்றிக்கான உத்தியைக் கொண்டுள்ள போட்டியாளர் ஒருவரா அல்லது மற்றொருவரா என்பதே மையமாக உள்ளது. (தேர்வு செய்தலின் ஒப்புக்கொள்ளப்பட்ட உண்மையைப் பயன்படுத்தி, சரியான தகவலைக் கொண்டும், அதே நேரத்தில் அதன் ஒரே விளைவு "வெற்றி" அல்லது "தோல்வி" என இரண்டில் ஒன்றாக மட்டுமே இருக்கக்கூடிய மேலும் இவற்றில் இரண்டுக்கும் போட்டியாளர் வெற்றி உத்திகளைக் கொண்டிருக்காத வகையிலான விளையாட்டுகளும் உள்ளன என்பதை நிரூபிக்க முடியும்.) புத்திசாலித்தனமாக வடிவமைக்கப்பட்ட விளையாட்டுகளுக்கு, இவ்விதத்திலான உத்திகள் இருப்பதென்பது விளக்கத் தன்மை கொண்ட கணவியல் கோட்பாட்டில் முக்கிய விளைவுகளைக் கொண்டுள்ளது.

தொடர்ச்சியற்ற மற்றும் தொடர்ச்சியான விளையாட்டுகள்[தொகு]

விளையாட்டுக் கொள்கையின் பெரும்பகுதியானது, வரையறுக்கப்பட்ட எண்ணிக்கையிலான போட்டியாளர்கள், செயல்பாடுகள், நிகழ்வுகள், விளைவுகள், போன்றவற்றைக் கொண்டுள்ள தொடர்ச்சியற்ற விளையாட்டுகளைப் பற்றியதாகவே உள்ளது. இருப்பினும் பல கருத்துகளை நீட்டிக்க முடியும். தொடர்ச்சியான விளையாட்டுகளில் போட்டியாளர்கள் தொடர்ச்சியான உத்திக் குழுவில் இருந்து ஓர் உத்தியைத் தேர்வு செய்துகொள்ள முடியும். எடுத்துக்காட்டாக கோர்னாட் போட்டியானது, போட்டியாளர்களின் உத்திகள், பின்ன அளவுகள் உட்பட எதிர்க்குறியற்ற அளவுகளில் இருக்கும்படியான வகையில் மாதிரியாக்கப்பட்டுள்ளன.

தொடர்ச்சியான பர்சியூட் மற்றும் எவேஷன் விளையாட்டுகள் போன்ற வகையீட்டு விளையாட்டுகள் தொடர்ச்சியான விளையாட்டுகளாகும்.

ஒரு போட்டியாளர் மற்றும் பல போட்டியாளர் விளையாட்டுகள்[தொகு]

தனிநபர் முடிவெடுக்கும் சிக்கல்கள் சில நேரங்களில் "ஒரு போட்டியாளர் விளையாட்டுகள்" எனக் கருதப்படுகின்றன. இந்த சூழ்நிலைகள் விளையாட்டுக் கோட்பாட்டியல் ரீதியாக இல்லாதபட்சத்தில், முடிவெடுத்தல் கோட்பாட்டின் சித்தாந்தத்தில் உள்ள ஒரே கருவியை அதிக எண்ணிக்கையில் பயன்படுத்தி அவை மாதிரியாக்கப்படுகின்றன. இரண்டு அல்லது மேற்பட்ட போட்டியாளர்கள் இடம்பெறும்பட்சத்தில் மட்டுமே ஒரு சிக்கல் விளையாட்டுக் கொள்கை ரீதியானதாகக் கருதப்படுகிறது. சீரற்ற முறையில் செயல்படும் ஒரு போட்டியாளர் "வாய்ப்பு சார் செயல்களைச்" செய்கிறார். மேலும் அது "இயல்பான செயல்பாடுகள்" எனவும் அழைக்கப்படுகிறது. பெரும்பாலும் சேர்க்கப்படுகிறது (Osborne & Rubinstein 1994). பொதுவாக இந்தப் போட்டியாளர் மூன்றாவது போட்டியாளராகக் கருதப்படுவதில்லை. ஏனெனில் அப்படியானால் அது இர் போட்டியாளர் விளையாட்டாகிவிடும், ஆனால் அவர் விளையாட்டில் தேவைப்படும் போது ஒரு பகடையின் பங்களிப்பையே வழங்குவார். முடிவிலா எண்ணிக்கையிலான போட்டியாளர்களைக் கொண்டுள்ள விளையாட்டுகள் n-நபர் விளையாட்டுகள் என அழைக்கப்படுகின்றன (Luce & Raiffa 1957).

மெட்டா-விளையாட்டுகள்[தொகு]

சில விளையாட்டுகளின் விளையாடப்படும் போக்கானது இலக்கு அல்லது பொருள் எனப்படும் மற்றொரு விளையாட்டை உருவாக்குவதற்கான விதிகளை உருவாக்க உதவும்பட்சத்தில் அவை மெட்டா-விளையாட்டுகள் எனப்படுகின்றன. மெட்டா-விளையாட்டுகள் உருவாக்கப்படும் விதித் தொகுப்பின் பயன்பாட்டு மதிப்பை அதிகரிக்க முயற்சிக்கிறது. மெட்டா-விளையாட்டுகளின் கோட்பாடானது வடிவமைப்புக் கோட்பாட்டின் இயங்கம்சத்துடன் தொடர்புடையதாகும்.

வரலாறு[தொகு]

விளையாட்டுக் கொள்கையின் முதல் கலந்துரையாடல் ஜேம்ஸ் வால்டெக்ராவே அவர்கள் எழுதிய கடிதத்தில் இடம்பெற்றது 1713. இந்தக் கடிதத்தில், வால்டெக்ராவே அவர்கள் லெ ஹெர் என்ற கார்டு விளையாட்டின் இருவர் விளையாடும் வகைப்பதிப்புக்கான மினிமேக்ஸ் கலவையான உத்தித் தீர்வை வழங்குகிறார்.

ஜேம்ஸ் மேடிசன் வெவ்வேறு நச்சாக்க அமைப்புகளின் கீழ், நிலைகள் நடந்துகொள்ளும் சாத்தியமுள்ள விதத்தைப் பற்றிய விளையாட்டுக் கொள்கை ரீதியான பகுப்பாய்வாக நாம் இன்று கருதும் கருத்தை உருவாக்கினார்.[11][12]

1838 ஆம் ஆண்டில் அண்டோயின் அகஸ்டின் கோர்னாட்டின் Recherches sur les principes mathématiques de la théorie des richesses (வளம் பற்றிய கோட்பாட்டின் கணிதவியல் தத்துவங்களிலான ஆராய்ச்சிகள் ) என்ற வெளியீடு வெளிவருவதற்கு முன்பு பொதுவான விளையாட்டுக் கொள்கை பகுப்பாய்வு பின்பற்றப்படவில்லை. இந்தப் பணித்திட்டத்தில் கோர்னாட் நாஷ் சமநிலையின் வகைக்கு மட்டுமே பொருந்தக்கூடியவகையில் வரையறை கொண்ட ஓர் இருதலை மேலாதிக்க நிலையைக் கருத்தில் கொண்டு அதற்கு ஒரு தீர்வை வழங்குகிறார்.

கோர்னாட்டின் பகுப்பாய்வானது வால்டெக்ராவேவின் பகுப்பாய்வை விட மிகவும் பொதுத்தன்மை கொண்டது எனினும், ஜான் வான் நியூமன் தொடர்ச்சியாக சில வெளியீடுகளை 1928 ஆம் ஆண்டில் வெளியிடும் வரை, விளையாட்டுக் கொள்கை என்பது ஒரு தனித்துவமான துறையாக விளங்கவில்லை. பிரெஞ்சு கணிதவியலாளர் எமிலி போரல் அதற்கு முன்பு விளையாட்டுகள் தொடர்பான சில பணித்திட்டங்களை செய்திருந்தார், விளையாட்டுக் கொள்கை என்பதைக் கண்டுபிடித்த பெருமைக்குரியவராகக் கருதப்படக்கூடிய உரிமை வான் நியூமனுக்கே உண்டு. வான் நியூமன் மிகவும் அறிவுக்கூர்மையுள்ள கணிதவியலாளராவார், அவரது பணிகள் கணவியல் முதல் அணு மற்றும் ஹைட்ரஜன் குண்டுகள் உருவாக்கத்திற்கத்திற்கும் இறுதியாக கணினிகளை உருவாக்கும் அவரது செயல்களுக்கும் மிகவும் முக்கியமான அவரது கணக்கீடுகள் வரை பரந்துவிரிந்திருந்தன. விளையாட்டுக் கொள்கை தொடர்பான வான் நியூமனின் பணித்திட்டமானது, நியூமன் மற்றும் ஆஸ்கார் மார்கென்ஸ்டன் ஆகியோர் எழுதி 1944 ஆம் ஆண்டில் வெளிவந்த தியரி ஆஃப் கேம்ஸ் அண்ட் எக்கனாமிக் பிஹேவியர் என்ற புத்தகத்தில் முடிவடைந்தது. இந்தப் பெரிய பணித்திட்டமானது இரு நபர் பூச்சியக் கூடுதல் விளையாட்டுகளுக்கான பரஸ்பர நிலைத்தன்மை கொண்ட தீர்வுகளைக் கண்டறிவதற்கான முறைகளைக் கொண்டுள்ளது. இந்தக் காலகட்டத்தில், விளையாட்டுக் கொள்கை பற்றிய பணிகள் அனைத்தும் ஒருங்கியக்கத் தன்மை கொண்ட விளையாட்டுக் கொள்கையிலேயே கவனம் செலுத்தின, அது தனிநபர் குழுக்களுக்கள் முறையான உத்திகள் பற்றி அவர்களுக்குள் ஒப்பந்தங்கள் செய்துகொள்ள முடியும் எனக் கருத்தில் கொண்டு, அவர்களுக்கான விரும்பத்தக்க உத்திகளைப் பகுப்பாய்வு செய்வதிலேயே கவனம் செலுத்துகிறது.

1950 ஆம் ஆண்டில் ப்ரிசனர்ஸ் டைலெம்மாவின் முதல் விவாதம் தோன்றியது. மேலும் RAND கார்ப்பரேஷன் நிறுவனத்தில் இந்த விளையாட்டைப் பற்றிய சோதனை மேற்கொள்ளப்பட்டது. கிட்டத்தட்ட இதே நேரத்தில், ஜான் நாஷ் போட்டியாளர்களின் உத்திகளுக்கான பரஸ்பர நிலைத்தன்மைக்கான தேர்வளவைகளை உருவாக்கினார். அது நாஷ் சமநிலை எனப்பட்டது. மேலும் அது வான் நியூமன் மற்றும் மார்கென்ஸ்டன் ஆகியோர் முன்மொழிந்த தேர்வளவைகளைக் காட்டிலும் பரந்துபட்ட விளையாட்டுகளுக்குப் பொருந்தக்கூடியதாக இருந்தது. இந்தச் சமநிலையானது ஒருங்கியக்கத் தன்மை கொண்ட விளையாட்டுகளோடு கூட, ஒருங்கியக்கத் தன்மை இல்லாத விளையாட்டுகளின் பகுப்பாய்வையும் அனுமதிக்கும் வகையில் போதுமான அளவு பொதுத்தன்மையுடன் உள்ளது.

விளையாட்டுக் கொள்கையானது 1950களில் ஒரு பெரும் குழப்பமான நிகழ்வைச் சந்தித்தது. அந்தக் காலகட்டத்திலேயே பிரதான அம்சம், விரிவான வடிவ விளையாட்டு, கற்பனைத்தனமான விளையாட்டு, திரும்பத் திரும்ப விளையாடப்படும் விளையாட்டுகள் மற்றும் ஷேப்லி வேல்யு ஆகியவை உருவாக்கப்பட்டன. மேலும் இந்தக் காலகட்டத்திலேயே தத்துவம் மற்றும் அரசியல் அறிவியல் ஆகிய துறைகளில் விளையாட்டுக் கொள்கையின் பயன்பாடு நிகழ்ந்தது.

1965 ஆம் ஆண்டில் ரெயின்ஹார்ட் செல்டென் துணை விளையாட்டின் சரியான சமநிலை என்னும் தீர்வுக் கருத்தை அறிமுகப்படுத்தினார், அது நாஷ் சமநிலையை மேலும் சீர்ப்படுத்தியது (அவர் பின்னாளில் நடுங்கும் கை சரியான தன்மை என்னும் கருத்தையும் அறிமுகப்படுத்தினார்). 1967 ஆம் ஆண்டில் ஜான் ஹார்சன்யி முழுமையான தகவல்கள் மற்றும் பேயெசியன் விளையாட்டுகள் போன்ற கருத்துகளை உருவாக்கினார். நாஷ், செல்டென் மற்றும் ஹார்சன்யி ஆகியோர் பொருளாதாரவியல் விளையாட்டுக் கொள்கையிலான அவர்களது பங்களிப்புகளுக்காக, 1994 ஆம் ஆண்டு பொருளாதாரத்திற்கான நோபல் பரிசுகளை வென்றனர்.

1970களில் விளையாட்டுக் கொள்கையானது உயிரியலில் பரவலாகப் பயன்படுத்தப்பட்டது. இதற்கு ஜான் மேய்னர் ஸ்மித்தின் பணிகளும் அவரது பரிணாமவியல் நிலைத்தன்மை உத்தியுமே பெரும் காரணங்களாக இருந்தன. மேலும் கூடுதலாக உடன் தொடர்புடைய சமநிலை, நடுங்கும் கை சரியான தன்மை மற்றும் பொதுவான அறிவு[13] ஆகிய கருத்துகளும் அறிமுகப்படுத்தப்பட்டு பகுப்பாய்வு செய்யப்பட்டன.

2005 ஆம் ஆண்டில் தாமஸ் ஸ்கெல்லிங் மற்றும் ராபர்ட் ஆமன் ஆகிய விளையாட்டுக் கொள்கையாளர்கள் நோபல் பரிசு பெற்றவர்களான நாஷ், செல்டென் மற்றும் ஹார்சன்யி ஆகியோரைப் பின்பற்றினர். ஸ்கெல்லிங் பரிணாமவியல் விளையாட்டுக் கொள்கைக்கான முந்தைய எடுத்துக்காட்டுகளான செயல்மிகு மாதிரிகளில் பணிபுரிந்தார். ஆமன், சமநிலைக் கருத்துக்கே அதிகமாகப் பங்களித்தார். அவர் சமநிலை மாற்றம், உடன் தொடர்புள்ள சமநிலை ஆகியவற்றை அறிமுகம் செய்தார். மேலும் பொதுவான அறிவு பற்றிய கருதுகோள் மற்றும் அதன் விளைவுகள் ஆகியவை பற்றிய விரிவான பகுப்பாய்வுகளை மேற்கொண்டார்.

2007 ஆம் ஆண்டில் ரோசர் மையர்சன் லீயனிட் ஹர்விக்ஸ் மற்றும் எரிக் மாஸ்கின் ஆகியோருடன் இணைந்து "இயங்கம்ச வடிவமைப்புக் கோட்பாட்டுக்கான அடிப்படைகளை உருவாக்கியதற்காக" பொருளாதாரத்திற்கான நோபல் பரிசு பெற்றார். சரியான சமநிலை பற்றிய கருத்து, ஒரு முக்கியப் புத்தகம் பட்டப்படிப்புக்கான புத்தகம் ஆகியவை மையர்சன்னின் பங்களிப்புகளில் அடங்கும், அந்தப் புத்தகம்: கேம் தியரி, அனாலிசிஸ் ஆஃப் கான்ஃப்ளிக்ட் (Myerson 1997).

குறிப்புகள்[தொகு]

  1. Ross, Don. "Game Theory". The Stanford Encyclopedia of Philosophy (Spring 2008 Edition). Edward N. Zalta (ed.). பார்த்த நாள் 2008-08-21.
  2. விளையாட்டுக் கொள்கையிலான சோதனைப் பணிகள் தொடர்ந்து பல பெயரிகளின் கீழ் நடைபெற்று வருகின்றன, சோதனை பொருளாதாரம், நடத்தை ரீதியான பொருளாதாரம் மற்றும் நடத்தை ரீதியான விளையாட்டுக் கொள்கை ஆகியவை அவற்றில் சில. இந்தத் துறையிலான ஒரு சமீபத்திய கலந்துரையாடலுக்கு, Camerer (2003) என்பதைக் காண்க.
  3. எவல்யூஷனரி கேம் தியரி (தத்துவத்திற்கான ஸ்டேன்ஃபோர்டு அறிவுக்களஞ்சியம்)
  4. 4.0 4.1 பயாலஜிக்கல் ஆல்ட்ருயிஸ்ம் (தத்துவத்திற்கான ஸ்டேன்ஃபோர்டு அறிவுக்களஞ்சியம்)
  5. Algorithmic Game Theory. http://www.cambridge.org/journals/nisan/downloads/Nisan_Non-printable.pdf. 
  6. இ. உல்மேன் மார்கலிட், த எமர்ஜென்ஸ் ஆஃப் நார்ம்ஸ், ஆக்ஸ்ஃபோர்டு யுனிவெர்சிட்டி பிரஸ், 1977. சி. பிச்சியெரி, த கிராம்மர் ஆஃப் சொசைட்டி: த நேச்சுர் அண்ட் டைனமிக்ஸ் ஆஃப் சோஷியல் நார்ம்ஸ், கேம்பிரிட்ஜ் யுனிவெர்சிட்டி பிரஸ், 2006.
  7. "செல்ஃப்-ரெஃபியூட்டிங் தியரிஸ் ஆஃப் ஸ்ட்ரேட்டஜிக் இண்டெரேக்ஷன்: அ பேரடாக்ஸ் ஆஃப் காமன் நாலெட்ஜ் ", எர்கெண்ட்னிஸ் 30, 1989: 69-85. இந்த வெளியீட்டையும் காண்க: ரேஷனாலிட்டி அண்ட் கோ-ஆர்டினேஷன், கேம்பிரிட்க் யுனிவெர்சிட்டி பிரஸ், 1993.
  8. த டைனமிக்ஸ் ஆஃப் ரேஷனல் டெலிப்ரேஷன், ஹார்வர்ட் யுனிவெர்சிட்டி பிரஸ், 1990.
  9. "நாலெட்ஜ், பிலிஃப், அண்ட் கவுண்ட்டர்ஃபேக்ச்சுவல் ரீசனிங் இன் கேம்ஸ்." கிரிஸ்டினா பிச்சியெரி, ரிச்சர்ட் ஜெஃப்ரி மற்றும் ப்ரியன் ஸ்க்ரிம்ஸ் பதிப்புகளில்., த லாஜிக் ஆஃப் ஸ்ட்ரேட்டஜி. நியூ யார்க்: ஆக்ஸ்ஃபோர்டு யுனிவெர்சிட்டி பிரஸ், 1999.
  10. நன்னெறியில் விளையாட்டுக் கொள்கையின் பயன்பாடு தொடர்பான மேலும் விவரமான கலந்துரையாடலுக்கு, தத்துவத்திற்கான ஸ்டேன்ஃபோர்டு அறிவுக்களஞ்சியத்தின் கேம் தியரி அண்ட் எத்திக்ஸ் பகுதியைக் காண்க.
  11. ஜேம்ஸ் மேடிசன், வைசஸ் ஆஃப் த பொலிட்டிக்கல் சிஸ்டம் ஆஃப் த யுனைட்டட் ஸ்டேட்ஸ், ஏப்ரல், 1787. இணைப்பு
  12. ஜாக் ராக்கோவ், "ஜேம்ஸ் மேடிசன் அண்ட் த கன்ஸ்டிடியூஷன்", ஹிஸ்டரி நவ் , வெளியீடு 13 செப்டம்பர் 2007. இணைப்பு
  13. பொதுவான அறிவு என்பது முதலில் தத்துவவியலாளரான டேவிட் லூயிஸால் 1960களில் அவரது கன்வென்ஷன் என்னும் முன்மொழிதலிலேயே (பின்னாளில் புத்தகமாக வந்தது) விவாதிக்கப்பட்டது எனினும் 1970களில் பொருளியலாளர் ராபர்ட் ஆமனின் வெளியீடுகள் வரும் வரை அது கருதப்படவில்லை.

குறிப்புதவிகள்[தொகு]

Wikibooks-logo-en.svg
Introduction to Game Theory
தொடர்பான நூல் விக்கி நூல்கள் தளத்தில் உள்ளது.


பாடநூல்களும் பொதுக் குறிப்புகளும்[தொகு]

  • Aumann, Robert J. (1987), "game theory,", The New Palgrave: A Dictionary of Economics, 2, pp. 460–82 .
  • (2008). த நியூ பால்க்ரேவ் டிக்ஷனரி ஆஃஒ எக்கனாமிக்ஸ் , 2ஆம் பதிப்பு:
"கேம் தியரி" - ராபர்ட் ஜே. ஆமன், கருத்து.
"கேம் தியரி இன் எக்கனாமிக்ஸ், ஆரிஜின்ஸ் ஆஃப்," - ராபர்ட் லீயனார்ட். கருத்து
"பிஹேவியரல் எக்கனாமிக்ஸ் அண்ட் கேம் தியரி" - ஃபரூக் கல். கருத்து
  • Dutta, Prajit K. (1999), Strategies and games: theory and practice, MIT Press, ISBN 978-0-262-04169-0 . இளங்கலை மற்றும் வணிக மாணவர்களுக்கு ஏற்றது.
  • Fernandez, L F.; Bierman, H S. (1998), Game theory with economic applications, Addison-Wesley, ISBN 978-0-201-84758-1 . உயர்நிலைப் இளங்கலைப் பட்டக்கல்வி மாணவர்களுக்கு ஏற்றது.
  • Gibbons, Robert D. (1992), Game theory for applied economists, Princeton University Press, ISBN 978-0-691-00395-5 . மேம்பட்ட இளங்கலைப் பட்டக்கல்வி மாணவர்களுக்கு ஏற்றது.
  • Robert Gibbons (2001), A Primer in Game Theory, London: Harvester Wheatsheaf, ISBN 978-0-7450-1159-2  என்ற பெயரில் ஐரோப்பாவில் வெளியிடப்பட்டது.
  • Gintis, Herbert (2000), Game theory evolving: a problem-centered introduction to modeling strategic behavior, Princeton University Press, ISBN 978-0-691-00943-8 
  • Green, Jerry R.; Mas-Colell, Andreu; Whinston, Michael D. (1995), Microeconomic theory, Oxford University Press, ISBN 978-0-19-507340-9 . பட்டக் கல்வி மாணவர்களுக்கு ஏற்ற வகையில் விளையாட்டுக் கொள்கையை விளக்குகிறது.
  • Isaacs, Rufus (1999), Differential Games: A Mathematical Theory With Applications to Warfare and Pursuit, Control and Optimization, New York: Dover Publications, ISBN 978-0-486-40682-4 
  • Miller, James H. (2003), Game theory at work: how to use game theory to outthink and outmaneuver your competition, New York: McGraw-Hill, ISBN 978-0-07-140020-6 . பொது வாசகர்களுக்கு ஏற்றது.
  • Osborne, Martin J. (2004), An introduction to game theory, Oxford University Press, ISBN 978-0-19-512895-6 . இளங்கலைப் பாடநூல்.
  • Osborne, Martin J.; Rubinstein, Ariel (1994), A course in game theory, MIT Press, ISBN 978-0-262-65040-3 . பட்டக்கல்வி நிலைக்கான நவீன அறிமுகம்.
  • Poundstone, William (1992), Prisoner's Dilemma: John von Neumann, Game Theory and the Puzzle of the Bomb, Anchor, ISBN 978-0-385-41580-4 . விளையாட்டுக் கொள்கை மற்றும் விளையாட்டுக் கோட்பாட்டாளர்கள் பற்றிய ஒரு பொது வரலாறு.

வரலாற்று ரீதியில் முக்கிய உரைகள்[தொகு]

  • ஆமன், ஆர்.ஜே. மற்றும் ஷேப்லி, எல்.எஸ். (1974), வேல்யுஸ் ஆஃப் நான்-அட்டாமிக் கேம்ஸ் , பிரின்ஸ்டன் யுனிவெர்சிட்டி பிரஸ்
  • Cournot, A. Augustin (1838), "Recherches sur les principles mathematiques de la théorie des richesses", Libraire des sciences politiques et sociales (Paris: M. Rivière & C.ie) 
  • Fisher, Ronald (1930), The Genetical Theory of Natural Selection, Oxford: Clarendon Press 
  • மறு அச்சுப் பதிப்பு: R.A. Fisher ; edited with a foreword and notes by J.H. Bennett. (1999), The Genetical Theory of Natural Selection: A Complete Variorum Edition, Oxford University Press, ISBN 978-0-19-850440-5 
  • மறு அச்சுப் பதிப்பு: R. Duncan Luce ; Howard Raiffa (1989), Games and decisions: introduction and critical survey, New York: Dover Publications, ISBN 978-0-486-65943-5 
  • ஷேப்லி, எல்.எஸ். (1953), அ வேல்யு ஃபார் n-பெர்சன் கேம்ஸ், இன்: காண்ட்ரிபியூஷன்ஸ் டு த தியரி ஆஃப் கேம்ஸ் தொகுதி II, எச்.டபிள்யு. குன் மற்றும் ஏ.டபிள்யு. டக்கர் (eds.)
  • ஷேப்லி, எல்.எஸ். (1953), ஸ்டொக்காஸ்டிக் கேம்ஸ், ப்ரொசீடிங்ஸ் ஆஃப் நேஷனல் அக்காடமி ஆஃப் சயின்ஸ் தொகுதி. 39, ப. 1095–1100.
  • Zermelo, Ernst (1913), "Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels", Proceedings of the Fifth International Congress of Mathematicians 2: 501–4 

பிற அச்சுக் குறிப்புதவிகள்[தொகு]

வலைத்தளங்கள்[தொகு]

  1. வழிமாற்று வார்ப்புரு:Areas of mathematics

"http://ta.wikipedia.org/w/index.php?title=ஆட்டக்_கோட்பாடு&oldid=1354173" இருந்து மீள்விக்கப்பட்டது