சேர்வியல் (கணிதம்)

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்

கணிதத்தை பரந்தவாரியாக இரண்டு பிரிவுகளாகப்பிரிக்கலாம். தனித்தனிச்செயல்முறைகள் கொண்டது ஒன்று. தொடர் செயல்முறைகள் கொண்டது மற்றொன்று. முதல் பிரிவில் இயற்கணிதம், நேரியல் இயற்கணிதம், எண் கோட்பாடு, சேர்வியல், முதலியவை அடங்கும். இரண்டாம் பிரிவில் பகுவியல், சார்புப்பகுவியல், இடவியல், முதலியவை அடங்கும். வடிவவியல் இரண்டிலும் அடங்கும். இவைகளில் சேர்வியல் (Combinatorics), என்ற பிரிவின் அடிப்படைக் கருத்துகள் மனிதனின் மூளையில் மனிதன் தோன்றிய காலத்திலிருந்தே இருந்ததாகக் கொள்ளலாம். ஏனென்றால் ஆதி மனிதன் தன் மூக்கைத் தன் ஒரு கையால் தொடுவதற்கு இரண்டு வழிகள் உண்டு என்று கணக்கிட்ட நாட்களிலிருந்து சேர்வியல் உண்டாகிவிட்டது!

சேர்வியல் விளக்குத்தூண்கள்[தொகு]

கணித வல்லுனர்கள் அத்தனைபேருக்குமே சேர்வியலில் ஒரு பங்கு உண்டு. இருந்தாலும் காலப்போக்கில் வருங்காலத்திற்கே சேர்வியலுக்கு வழிகாட்டிகளாக இருந்ததாகச் சிலரைச் சொல்லமுடியும். பதினேழாவது நூற்றாண்டிலேயே லெப்னிட்ஸ் (Gottfried Leibniz) சேர்வியலுக்கு வித்திட்டார். பதினெட்டாவது நூற்றாண்டில் ஆய்லர் அதைப் பேணி வளர்த்தார். ஆனாலும் பத்தொன்பதாவது நூற்றாண்டு வரையில் இயற்கணிதத்தின் ஓர் அத்தியாயமாகத்தான் சேர்வியல் இருந்தது. நியூட்டன் ஈருறுப்புத் தேற்றத்தை நிறுவிய நாட்களிலிருந்து பள்ளிக் கணக்குகளில், வரிசைமாற்றம் (Permutation), சேர்வு (Combination) என்ற இரண்டு செயல்முறைகள் அடிப்படை எண்கணித முறைகளாகப் கற்பிக்கப் படுகின்றன. இவையிரண்டினுடைய பற்பல உயர்ந்த மேம்பாடுகள் தான் சேர்வியல் என்ற இன்றைய துணைப்பிரிவு இயல். இருபதாவது நூற்றாண்டில் ஸ்ரீனிவாச ராமானுஜன், ஜார்ஜ் போல்யா, ஆர். பி. ஸ்டான்லி, ஜி. சி. ரோடா, பால் ஏர்டோசு, ஆல்ப்ஃரெட் யங் இன்னும் பலரின் ஆய்வுகளினால், கணிதத்தின் ஒரு துணை இயலாகவே மிளிர்ந்தது.

மாதிரிப் பிரச்சினைகள்[தொகு]

ஒரு செயலை எத்தனை வழிகளில் செய்யலாம் என்ற கேள்வி எழும்போதெல்லாம் சேர்வியலின் எண்ணப் பாதைகளில் செல்கிறோம்.எடுத்துக்காட்டாக சில மாதிரிப் பிரச்சினைகள்:

  • வேளாண்மைச் சோதனைச் சாலையில் சில குறிப்பிட்ட விதைகளையும் சில குறிப்பிட்ட உரங்களையும் அவைகளுக்குள் உள்ள பரஸ்பர உறவுகளைத் துல்லியமாகக் கணக்கிடும் பிரச்சினை.
  • பூகோளப் படங்களை நாடுகளைப் பிரித்துக் காட்டும் வகையில் எத்தனை குறைந்த நிறங்களால் நிறம் தீட்டமுடியும்?
  • பென்சீன் மூலக்கூறுகள் எத்தனை இருக்கமுடியும்?

சேர்வியலுக்குள் உப இயல்கள்[தொகு]

இன்று சேர்வியலுக்குள்ளேயே பலவித உப இயல்கள் ஏற்பட்டுவிட்டன. எடுத்துக்காட்டாக சில:

கணிதத்தின் முக்கிய துறைகள் தொகு
எண்கணிதம் | அளவியல் | கணக் கோட்பாடு | இயற்கணிதம் | அடிப்படை இயற்கணிதம் | நேரியல் இயற்கணிதம் | நுண்புல இயற்கணிதம் | வடிவவியல் | பகுவியல் | நுண்கணிதம் | நிகழ்தகவு | புள்ளியியல் | சேர்வியல் | முக்கோணவியல் | இடவியல் | தருக்கவியல் | முடிச்சியல் | ஒழுங்கின்மை கோட்பாடு | பயன்பாட்டுக் கணிதம்

ho

"http://ta.wikipedia.org/w/index.php?title=சேர்வியல்_(கணிதம்)&oldid=1347715" இருந்து மீள்விக்கப்பட்டது