குறுக்குப் பெருக்கு (திசையன்)
கணிதத்தில் குறுக்குப் பெருக்கல் அல்லது குறுக்குப் பெருக்கு அல்லது திசையன் பெருக்கல் (cross product or vector product) என்பது யூக்கிளீடிய இட வெளியில் () உள்ள இரு திசையன்களுக்கு இடையே நிகழ்த்தும் கணிதச் செயல் (வினை) ஆகும். இந்த குறுக்கு பெருக்கலின் விளைவாக பெறப்படுவதும் ஒரு திசையனே. இந்தத் திசையன் பெருக்கப்படும் இரு திசையன்களுக்கும் செங்குத்தானதாக இருக்கும்.[1] அதாவது, அவ்விரு திசையன்கள் இருக்கும் தளத்திற்குச் செங்குத்தான திசையில் இருக்கும். இதன் குறியீடு .[2]. இப் பெருக்கலைப் புறப்பெருக்கல் என்றும் கூறுவர். இப்பெருக்கல், குறுக்குப் பெருக்கம் எனவும் சில இடங்களில் குறிப்பிடப்படுகிறது.[3]
இரு திசையன்கள் ஒரே திசையில் இருந்தாலோ, நேரெதிர் திசைகளில் இருந்தாலோ அல்லது இரண்டில் ஏதாவது ஒரு திசையனின் பரும அளவு பூச்சியமாகவோ இருந்தால், அவ்விரு திசையன்களில் குறுக்குப் பெருக்கலின் மதிப்பு பூச்சியமாகும்.[4] குறுக்குப் பெருக்கல் எதிர்பரிமாற்றுப் பண்புடையது. அதாவது, a × b = − b × a. மேலும் கூட்டலின் மீதான பங்கீட்டுப் பண்பும் கொண்டது. அதாவது, a × (b + c) = a × b + a × c).[1]
வரையறை
[தொகு]
a என்னும் திசையனை b என்னும் திசையனால் குறுக்குப் பெருக்கல் செய்வதை a × b எனக்குறிப்பர்.[2] (பெருக்கல் குறி x என்பதை ஆங்கில எழுத்தாகிய x உடன் குழப்பிக்கொள்ளாமல் இருக்க இப்பெருக்கலை a∧b என்றும் எழுதுவர்[2][5][6][7]). இந்த a × b என்னும் குறுக்குப் பெருக்கானது இவ்விரண்டு திசையன்களுக்கும் செங்குத்தான திசையில் இருக்கும். பெருக்குத்தொகையின் பரும அளவு a, b ஆகியவற்றை பக்கங்களாகக் கொண்ட இணைகரத்தின் பரப்பளவு ஆகும். இதனைக் கீழ்க்காணும் வாய்பாடாகவும் குறிக்கலாம்[8][9]
இதில் θ என்பது aக்கும், bக்கும் இடையே உள்ள கோணம் ஆகும். இக்கோணம் 0° ≤ θ ≤ 180°. a யும் b யும் a, b ஆகிய திசையன்களின் பரும அளவுகள் ஆகும். என்பது a, bஆகியவற்றுக்குச் செங்குத்தான திசையில் உள்ள அலகு திசையன் ஆகும். சில நேரங்களில் அலகு நெறிமத்தின் மேலே காட்டப்பட்டுள்ள கூரைக் குறி விடுபட்டும் இருக்கும். எனினும் அது அலகு திசையன்தான். குறுக்குப் பெருக்கலின் விளைவாக எழும் திசையனின் திசையை அறிய a என்னும் திசையனை b என்னும் திசையன் நோக்கிச் சுழற்றினால், ஒரு வலஞ்சுழி திருகாணி எத்திசையில் நகருமோ அதே திசையில் இருக்கும். இதனை படத்தில் காணலாம்.
எண் கணிதத்தில் 2x4 = 8 என்றால், 4x2 என்பதும் 8 தான். ஆனால், திசையன்களின் பெருக்கலாகிய குறுக்குப் பெருக்கலில் a × b ≠ b × a.
குறுக்குப் பெருக்கம் கணக்கிடல்
[தொகு]ஆயக் குறியீடு
[தொகு]
ஒரு வலக்கை ஆள்கூற்று முறைமையில் அடிப்படை அலகு திசையன்களான i, j, k மூன்றும் பின்வரும் சமனி முடிவுகளை நிறைவு செய்யும்:[1]
எதிர்பரிமாற்றுப் பண்பின்படி இம்முடிவுகளிலிருந்து பின்வரும் சமனிகள் பெறப்படுகின்றன:
குறுக்குப் பெருக்கலின் எதிர்பரிமாற்றுப் பண்பின்படி பெறப்படும் மேலும் ஒரு சமனி:
- (பூச்சிய திசையன்).
இச்சமனிகளுடன் குறுக்குப்பெருக்கலின் பங்கீட்டுப் பண்பு மற்றும் நேரியல் பண்புகளை இணைத்து a , b ஆகிய இரு திசையன்களின் குறுக்குப் பெருக்கலைக் கணக்கிடலாம்:
இவ்விரு திசையன்களையும் அடிப்படை அலகு திசையன்களான i, j, k ஒவ்வொன்றுக்கும் இணையான செங்குத்துக் கூறுகளின் கூடுதலாக எழுதமுடியும்.
பங்கீட்டுப் பண்பின்படி a × b குறுக்குப்பெருக்கலை பின்வருமாறு விரிவாக்கம் செய்யலாம்:
இதனை a × b குறுக்குப் பெருக்கலானது i, j, k -களில் அமைந்த ஒன்பது எளிய குறுக்குப் பெருக்கல்களின் கூடுதலாக பிரிக்கப்பட்டதாகக் கொள்ளலாம். இந்த ஒன்பது சிறுசிறு குறுக்குப் பெருக்கல்கள் ஒவ்வொன்றிலும் உள்ள இரு அடிப்படை அலகு திசையன்கள் ஒன்றுக்கொன்று இணையான அல்லது செங்குத்தானவை. அவற்றினை மேலே தரப்பட்ட சமனிகளைக் கொண்டு எளிதில் கணக்கிட a × b இன் மதிப்பு:
அணிக் குறியீடு
[தொகு]
குறுக்குப் பெருக்கலை அணிக்கோவை குறிக்கலாம்.[1]
இந்த அணிக்கோவையை சாரசு விதி அல்லது இணைக்காரணி கொண்டு விரிவாக்கல் முறையில் கணக்கிடலாம்.
- சாரசு விதியை பயன்படுத்தி விரித்தல்:
அணிக்கோவையின் முதல் நிரைமூலம் இணைக்காரணி விரிவாக்கம் காணல்:[10]
இந்த விரிவு a x b திசையனின் கூறுகளை நேரடியாகத் தருகிறது.
பண்புகள்
[தொகு]வடிவவியல் பொருள்
[தொகு]

a , b திசையன்களின் குறுக்குப்பெருக்கலின் பரும அளவு a , b திசையன்களை அடுத்துள்ள பக்கங்களாகக் கொண்ட இணைகரத்தின் நேர்மப் பரப்பளவுக்குச் சமமாக இருக்கும்:[1]
இதேபோல a, b , c ஆகிய மூன்று திசையன்களின் குறுக்குப் பெருக்கல் மற்றும் புள்ளிப் பெருக்கல் இரண்டின் கலப்பான திசையிலி முப்பெருக்கம் இம்மூன்று திசையன்களையும் ஒருமுனை பக்கங்களாகக் கொண்ட இணைகரத்திண்மத்தின் கனவளவுக்குச் சமமாக இருக்கும்:
திசையிலி முப்பெருக்கத்தின் மதிப்பு எதிர்மமாகவும் இருக்கலாமென்பதால் இணைகரத்திண்மத்தின் கனவளவு திசையிலி முப்பெருக்கத்தின் தனி மதிப்பாகத் தரப்படுகிறது:
குறுக்குப் பெருக்கத்தின் மதிப்பு இரு திசையன்களுக்கு இடைப்பட்ட கோணத்தின் சைன் மதிப்பைக் கொண்டுள்ளதால் குறுக்குப் பெருக்கலை செங்குத்துத்தன்மைக்கான அளவீடாகக் கொள்ளலாம். இதேபோல புள்ளிப் பெருக்கலின் மதிப்பு அவ்விரு திசையன்களுக்கு இடைப்பட்ட கோணத்தின் கொசைன் மதிப்பைப் கொண்டுள்ளதால் புள்ளிப் பெருக்கலை இணைத்தன்மைக்கான அளவீடாகக் கொள்ளலாம்.
இரு அலகுத்திசையன்கள் செங்குத்தானவை என்றால் அவற்றின் குறுக்குப் பெருக்கத்தின் அளவு 1; அவை இணையானவை என்றால் அவற்றின் குறுக்குப் பெருக்கத்தின் அளவு 0.
புள்ளிப்பெருக்கலின் அளவு இதற்கு எதிர் மாறானது. இரு அலகுத்திசையன்கள் செங்குத்தானவை என்றால் அவற்றின் புள்ளிப் பெருக்கத்தின் அளவு 0; அவை இணையானவை என்றால் அவற்றின் புள்ளிப் பெருக்கத்தின் அளவு 1.
மேலும் அலகு திசையன்கள் இரு முற்றொருமைகளைத் தருகின்றன:
- இரு அலகு திசையன்களின் புள்ளிப் பெருக்கத்தின் அளவு = அவ்விரு அலகு திசையன்களுக்கு இடைப்பட்ட கோணத்தின் கொசைன் மதிப்பு (நேர்மம் அல்லது எதிர்மமாக இருக்கலாம்).
- இரு அலகு திசையன்களின் குறுக்குப் பெருக்கத்தின் அளவு = அவ்விரு அலகு திசையன்களுக்கு இடைப்பட்ட கோணத்தின் சைன் மதிப்பு (நேர்மமாக மட்டுமே இருக்கும்).
இயற்கணிதப் பண்புகள்
[தொகு]


- இரு திசையன்களின் குறுக்குப் பெருக்கல் ஒரு பூச்சிய திசையன் எனில் (a × b = 0):
அவ்விரு திசையன்களில் ஏதேனும் ஒரு திசையன் பூச்சியத் திசையனாகவோ (a = 0 அல்லது b = 0) அல்லது இரு திசையன்களும் இணை அல்லது எதிர் இணையானவையாகவோ இருக்கும். (sinθ = 0 => θ = 0° அல்லது θ = 180° => a ∥ b).
- தன் குறுக்குப் பெருக்கல் ஒரு பூச்சியத் திசையனாகும்:
- எதிர்பரிமாற்றுத்தன்மை கொண்டது,
- கூட்டலின் மீதான பங்கீட்டுப்பண்டுடையது:
- திசையிலி பெருக்கத்துடன் இயைபுடையது:
- சேர்ப்புப் பண்பு கொண்டதில்லை எனினும் ஜேக்கோபி முற்றொருமையை நிறைவு செய்கிறது:
- நீக்கல் விதியை நிறைவு செய்வதில்லை:
- a × b = a × c a ≠ 0 எனும்போது b = c என்பது உண்மையாகாது. எனினும்:
இதிலிருந்து a , b − c இரண்டும் இணை திசையன்கள். எனவே ஒன்று மற்றொன்றின் திசையிலி மடங்காக இருக்கும்:
- இங்கு t ஒரு திசையிலி.
மேலும் a × b = a × c, a ≠ 0 மற்றும் a ⋅ b = a ⋅ c ஆக இருக்கும்பட்சத்தில்:
b − c, a ஆகிய இரு திசையன்களின் குறுக்குப் பெருக்கல் பூச்சியமாகையால் அவை இணை திசையன்கள்; மேலும் அவற்றின் புள்ளிப்பெருக்கல் பூச்சியம் என்பதால் அவை ஒன்றுக்கொன்று செங்குத்தானவை. ஆனால் இரு திசையன்கள் ஒரே சமயத்தில் இணையானதாகவும் செங்குத்தானதாகவும் இருக்க முடியாது. எனவே b − c ஒரு பூச்சியத் திசையனாக இருக்க வேண்டும். அதாவது b = c.
மேற்கோள்கள்
[தொகு]- ↑ 1.0 1.1 1.2 1.3 1.4 Weisstein, Eric W. "Cross Product". mathworld.wolfram.com (in ஆங்கிலம்). Retrieved 2020-09-06.
- ↑ 2.0 2.1 2.2 "Comprehensive List of Algebra Symbols". Math Vault (in அமெரிக்க ஆங்கிலம்). 2020-03-25. Retrieved 2020-09-06.
- ↑ "பக்கம் 78, மேல்நிலை இரண்டாம் ஆண்டு- தொகுதி I, கணிதவியல், தமிழ்நாட்டுப் பாடநூல் கழகம், 2007 பதிப்பு" (PDF). Archived from the original (PDF) on 2016-01-16. Retrieved 2016-02-02.
- ↑ "Cross Product". www.mathsisfun.com. Retrieved 2020-09-06.
- ↑ Jeffreys, H; Jeffreys, BS (1999). Methods of mathematical physics. Cambridge University Press. கணினி நூலகம் 41158050.
- ↑ Acheson, DJ (1990). Elementary Fluid Dynamics. Oxford University Press. ISBN 0198596790.
- ↑ Howison, Sam (2005). Practical Applied Mathematics. Cambridge University Press. ISBN 0521842743.
- ↑ Wilson 1901, ப. 60–61
- ↑ Dennis G. Zill; Michael R. Cullen (2006). "Definition 7.4: Cross product of two vectors". Advanced engineering mathematics (3rd ed.). Jones & Bartlett Learning. p. 324. ISBN 0-7637-4591-X.
- ↑ Dennis G. Zill; Michael R. Cullen (2006). "Equation 7: a × b as sum of determinants". cited work. Jones & Bartlett Learning. p. 321. ISBN 0-7637-4591-X.
- ↑ M. R. Spiegel; S. Lipschutz; D. Spellman (2009). Vector Analysis. Schaum's outlines. McGraw Hill. p. 29. ISBN 978-0-07-161545-7.