சிற்றணிக்கோவை

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
Jump to navigation Jump to search

நேரியல் இயற்கணிதத்தில் ஒரு அணியின் சிற்றணிக்கோவை (minor) என்பது அவ்வணியிலிருந்து அதன் ஒன்று அல்லது ஒன்றுக்கு மேற்பட்ட நிரைகளையோ, நிரல்களையோ நீக்கக் கிடைக்கும் சிறிய சதுர அணியின் அணிக்கோவையாகும். ஒரு சதுர அணியிலிருந்து ஒரேயொரு நிரையையும், நிரலையும் மட்டும் நீக்கிப் பெறப்படும் சிற்றணிக்கோவைகள், முதல் சிற்றணிக்கோவைகள் (first minors) எனப்படுகின்றன. இவை அச்சதுர அணியின் அணிக்கோவை மதிப்பினைக் கணக்கிடுவதற்கும் அவ்வணியின் நேர்மாறு அணி காண்பதற்கும் பயன்படுகின்றன.

வரையறை[தொகு]

முதல் சிற்றணிக்கோவைகள்[தொகு]

A ஒரு சதுர அணி எனில் அதன் i-வது நிரை மற்றும் j-வது நிரலிலில் உள்ள உறுப்பின் சிற்றணிக்கோவை ((i,j) சிற்றணிக்கோவை அல்லது முதல் சிற்றணிக்கோவை)[1]) என்பது A அணியின் i-ஆவது நிரையையும் j-ஆவது நிரலையும் நீக்கிவிடக் கிடைக்கும் அணியின் அணிக்கோவையாகும்.[2] (i,j) சிற்றணிக்கோவையின் குறியீடு Mi,j

பொதுவான வரையறை

A ஒரு m × n அணி; k ஒரு முழு எண்; 0 < km, kn எனில்:

A இன் k × k சிற்றணிக்கோவை என்பது A அணியிலிருந்து mk நிரைகளையும் nk நிரல்களையும் நீக்கிய பின் கிடைக்கும் k × k அணியின் அணிக்கோவையாகும்.

இணைக்காரணிகள்[தொகு]

குறியிடப்பட்ட சிற்றணிக்கோவைகள் இணைக்காரணிகள் என அழைக்கப்படும்.

(i,j) சிற்றணிக்கோவையை ஆல் பெருக்கக் கிடைப்பது (i,j) இணைக்காரணியாகும். இதன் குறியீடு Ci,j.

3 x 3 அணியின் சிற்றணிக்கோவை, இணைக்காரணி காணல்[தொகு]

எடுத்துக்காட்டு:

மேலுள்ள அணியில் சிற்றணிக்கோவை M23 காண்பதற்கு அந்த அணியிலிருந்து இரண்டாவது நிரையும் மூன்றாவது நிரலும் நீக்கப்பட்டு மீதமாகும் அணியின் அணிக்கோவையின் மதிப்பு கணக்கிடப்படுகிறது.

இதற்குரிய இணைக்காரணி C23:

இணைக்காரணி அணி[தொகு]

ஒரு அணியின் அனைத்து உறுப்புகளை அவற்றின் இணைக்காரணிகளைக் கொண்டு பதிலிடக் கிடைப்பது அவ்வணியின் இணைக்காரணி அணி எனப்படும். இணைக்காரணி அணியின் குறியீடு

3 x 3 பொது அணியின் இணைக்காரணி அணி

இதன் இணைக்காரணி அணி:

சிற்றணிக்கோவைகள், இணைக்காரணிகளின் பயன்பாடுகள்[தொகு]

அணிக்கோவைகளின் விரிவு[தொகு]

அணி எனில்

A இன் அணிக்கோவையின் (det(A)) jth நிரல் மூலமான இணைக்காரணி விரிவு:
A இன் அணிக்கோவையின் (det(A)) ith நிரல் மூலமான இணைக்காரணி விரிவு:

அணியின் நேர்மாறு[தொகு]

கிரமரின் விதியைப் பயன்படுத்தி நேர்மாற்றத்தக்க அணியின் இணைக்காரணிகளைக் கண்டுபிடித்து அவ்வணியின் நேர்மாறு அணியைக் காணலாம்.

இணைக்காரணிகளாலான அணி:

A அணியின் இணைக்காரணி அணியின் () இடமாற்று அணி, A இன் சேர்ப்பு அணி எனப்படும்.

A அணியின் நேர்மாறு அணி:

அணியின் அளவை[தொகு]

மெய்யெண்களாலான m × n அணியின் தரம் r எனில் அவ்வணிக்கு, குறைந்தபட்சம் ஒரு பூச்சியமில்லா r × r சிற்றணிக்கோவையும், பிற மேல்வரிசை சிற்றணிக்கோவைகள் அனைத்தும் பூச்சியமாகவும் இருக்கும்.

மேற்கோள்கள்[தொகு]

  1. Burnside, William Snow & Panton, Arthur William (1886) Theory of Equations: with an Introduction to the Theory of Binary Algebraic Form.
  2. http://www.textbooksonline.tn.nic.in/Books/11/Std11-Maths-TM-1.pdf பரணிடப்பட்டது 2016-11-20 at the வந்தவழி இயந்திரம் கணிதவியல், மேல்நிலை முதலாமாண்டு-தமிழ்நாட்டுப் பாடநூல் கழகம், 2007 பதிப்பு

வெளியிணைப்புகள்[தொகு]

"https://ta.wikipedia.org/w/index.php?title=சிற்றணிக்கோவை&oldid=3367463" இருந்து மீள்விக்கப்பட்டது