வகையிடலின் சங்கிலி விதி

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்

நுண்கணிதத்தில் வகையிடலின் சங்கிலி விதி அல்லது சங்கிலி விதி (chain rule) என்பது வகையிடல் விதிகளுள் ஒன்றாகும். இவ்விதி, இரண்டு அல்லது இரண்டுக்கும் மேற்பட்ட சார்புகளின் சேர்ப்புச் சார்பினை வகையிடும் வழிமுறையைத் தருகிறது. இதன் வாய்ப்பாட்டில், f , g எனும் இரு வகையிடத்தக்கச் சார்புகளின் சேர்ப்புச் சார்பான f ∘ g இன் வகைக்கெழு f , g இன் வகைக்கெழுக்கள் மூலம் தரப்படுகிறது.

வகையிடலிலுள்ள இந்தச் சங்கிலி விதிக்கு ஒத்ததாக தொகையிடலிலுள்ள விதி, பிரதியிடல் விதியாகும்.

வரலாறு[தொகு]

சங்கிலி விதி முதன்முதலில் லைப்னிட்சால் பயன்படுத்தப்பட்டதாகத் தெரியவருகிறது. \sqrt{a + bz + cz^2} என்ற சார்பை வகையிடும் போது இவ்விதி லைப்னிட்சால் பயன்படுத்தப்பட்டுள்ளது. மேலே தரப்பட்ட சார்பானது, வர்க்கமூலம் காணல் மற்றும் a + bz + cz^2 ஆகிய சார்புகளின் சேர்ப்பாக அமைகிறது. அவரது நினைவுக் குறிப்பொன்றில் அவரால் இதுபற்றிய குறிப்பு தரப்பட்டுள்ளது. சங்கிலி விதியின் பொதுக் குறியீடு, லைப்னிட்சினுடையதாகும்.[1] பிரெஞ்சு கணிதவியலாளர் லோபிதால் (L'Hôpital) தனது Analyse des infiniment petits புத்தகத்தில் சங்கிலி விதியை மறைமுகமாகப் பயன்படுத்தியிருந்தாலும் வெளிப்படையாக அதுபற்றி எதுவும் குறிப்பிடவில்லை. லைப்னிட்சின் கண்டுபிடிப்பிற்கு நூறாண்டுகளுப்பின் எழுதப்பட்ட ஆய்லரின் பகுப்பியல் புத்தகங்களிலும் சங்கிலி விதி குறித்த எந்தவிதமானதொரு கருத்தும் காணப்படவில்லை.

ஒரு பரிமாணத்தில்[தொகு]

எடுத்துக்காட்டு 1[தொகு]

வானூர்தியிலிருந்து ஒருவர் வானில் குதித்த t வினாடிகளுக்குப் பின்,

கடல் மட்டத்திலிருந்து அவருள்ள இடத்தின் உயரம், g(t) = 4000 − 4.9t2.
h அலகு உயரத்தில் வளிமண்டல அழுத்தம், f(h) = 101325 e−0.0001h.

இவ்விரண்டு சார்புகளையும் வகையிட்டும், இரண்டையும் சேர்த்தும் பின்வரும் முடிவுகளைப் பெறலாம்:

  • f'(h) = -10.1325 e^{-0.0001h} இது h உயரத்தில், வளிமண்டல அழுத்தத்தின், உயரத்தைப் பொறுத்த மாறுவீதத்தைத் தருகிறது. மேலும் இது கடல் மட்டத்திலிருந்து h மீட்டர் உயரத்தில், குதித்தவர் மீது செயல்படும் மிதப்பு விசைக்கு விகிதத்தில் அமையும்.
  • (f \circ g)(t) இது குதித்து t வினாடிகள் ஆனபின், குதித்தவர் உணரும் வளிமண்டல அழுத்தமாகும்.
  • (f \circ g)'(t) இது, குதித்து t வினாடிகளுக்குப்பின் குதித்தவர் உணரும் வளிமண்டல அழுத்தத்தின், நேரத்தைப் பொறுத்த மாறுவீதமாகும். மேலும் இது குதித்து t வினாடிகளுக்குப் பின் குதித்தவர் மீது செயல்படும் மிதப்பு விசைக்கு விகிதத்தில் அமையும்.

சங்கிலி விதியின் வாய்ப்பாடு:

(f \circ g)'(t) = f'(g(t))g'(t).

இவ்வாய்ப்பாட்டின்படி மேலே குறிப்பிடப்பட்ட வளிமண்டல அழுத்தத்தின் மாறுவீதம்:

(f \circ g)'(t) = \big(\mathord{-}10.1325e^{-0.0001(4000 - 4.9t^2)}\big)\cdot\big(\mathord{-}9.8t\big).

சங்கிலி விதியின் கூற்று[தொகு]

ஒருமாறியில் அமைந்த மெய்யெண் மதிப்புச் சார்புகளுக்கு இவ்விதி எளிய வடிவில் அமைகிறது.

g என்ற சார்பு c புள்ளியில் வகையிடத்தக்கதாகவும் (g′(c) உள்ளது), f சார்பு g(c) இல் வகையிடத்தக்கதாகவும் இருந்தால், இவ்விரண்டு சார்புகளின் தொகுப்புச் சார்பு f ∘ g -ம் c இல் வகையிடத் தக்கதாக இருக்கும். மேலும் அதன் வகைக்கெழு[2]:

 (f\circ g)'(c) = f'(g(c))\cdot g'(c)
(f\circ g)' = (f'\circ g) \cdot g'\, எனச் சுருக்கமாக எழுதலாம்.

y = f(u), u = g(x) எனில் லைப்னிட்சின் குறியீட்டில்:

\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.

வகையிடப்படும் இடங்களைக் குறிப்பிட்டுப் பின்வருமாறு எழுதலாம்:

\left.\frac{dy}{dx}\right|_{x=c} = \left.\frac{dy}{du}\right|_{u = g(c)} \cdot \left.\frac{du}{dx}\right|_{x=c}.\,

இரண்டுக்கும் மேற்பட்ட சார்புகளுக்கு[தொகு]

இரண்டுக்கும் மேற்பட்ட சார்புகளின் சேர்ப்புச் சார்புக்குச் சங்கிலி விதியைப் பயன்படுத்தலாம். f, g, h சார்புகளின் சேர்ப்பு என்பது (இதே வரிசையில்), f சார்புடன் gh சார்பின் சேர்ப்பாகும். fgh சார்பின் வகைக்கெழு காண, f இன் வகைக்கெழுவும் gh இன் வகைக்கெழுவும் காண வேண்டும். f இன் வகைக்கெழுவை நேரிடையாகவும் gh இன் வகைக்கெழுவைச் சங்கிலி விதியைப் பயன்படுத்தியும் காணலாம்.

x = a புள்ளியில்,

(f \circ g \circ h)'(a) = f'((g \circ h)(a))(g \circ h)'(a) = f'((g \circ h)(a))g'(h(a))h'(a)

லைப்னிட்சின் குறியீட்டில்:

\frac{dy}{dx} = \left.\frac{dy}{du}\right|_{u=g(h(a))}\cdot\left.\frac{du}{dv}\right|_{v=h(a)}\cdot\left.\frac{dv}{dx}\right|_{x=a}

அல்லது சுருக்கமாக,

\frac{dy}{dx} = \frac{dy}{du}\cdot\frac{du}{dv}\cdot\frac{dv}{dx}

எடுத்துக்காட்டு:

y = e^{\sin {x^2}}

இச்சார்பை கீழ்க்காணும் சார்புகளின் தொகுப்பாகக் கொள்ளலாம்:

\begin{align}
y &= f(u) = e^u, \\
u &= g(v) = \sin v, \\
v &= h(x) = x^2.
\end{align}

இவற்றின் வகைக்கெழுக்கள்:

\begin{align}
\frac{dy}{du} &= f'(u) = e^u, \\
\frac{du}{dv} &= g'(v) = \cos v, \\
\frac{dv}{dx} &= h'(x) = 2x.
\end{align}

சங்கிலி விதியைப் பயன்படுத்த:

\frac{dy}{dx} = \frac{dy}{du}\cdot\frac{du}{dv}\cdot\frac{dv}{dx}
\frac{dy}{dx} = e^{\sin {x^2}}\cdot\cos{x^2}\cdot 2x

fgh சார்பை fg மற்றும் h சார்புகளின் தொகுப்பாகவும் எடுத்துக் கொள்ளலாம்.

இம்முறையில் சங்கிலி விதியைப் பயன்படுத்த:

(f \circ g \circ h)'(a) = (f \circ g)'(h(a))h'(a) = f'(g(h(a))g'(h(a))h'(a).

இந்த முடிவும் முதலில் கணக்கிட்டதும் சமமாகவே உள்ளதற்குக் காரணம்

(f \circ g )\circ h = f \circ (g \circ h) என்பதே.

வகுத்தல் விதி[தொகு]

சில வகையிடல் விதிகளைச் சங்கிலி விதியைப் பயன்படுத்தி அடையலாம். எடுத்துக்காட்டாக, வகுத்தல் விதியைச் சங்கிலி விதி, பெருக்கல் விதி இரண்டையும் பயன்படுத்திப் பெறலாம்.

\begin{align}
\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right)
&= \frac{d}{dx}\left(f(x)\cdot\frac{1}{g(x)}\right) \\
&= f'(x)\cdot\frac{1}{g(x)} + f(x)\cdot\frac{d}{dx}\left(\frac{1}{g(x)}\right).
\end{align}

பெருக்கல் விதிப்படி இம்முடிவு கிடைத்துள்ளது. இதற்குப்பின் 1/g(x) சார்பானது, g மற்றும் தலைகீழிச் சார்பின் சேர்ப்பாக எடுத்துக்கொள்ளப்பட்டு கொண்டு சங்கிலி விதிப்படி வகையிடப்படுகிறது. தலைகீழிச் சார்பு x உடன் 1/x ஐ இணைக்கிறது. 1/x இன் வகைக்கெழு −1/x2.

என்வே மேலுள்ள முடிவிற்குச் சங்கிலி விதியைப் பயன்படுத்த:

f'(x)\cdot\frac{1}{g(x)} + f(x)\cdot\left(-\frac{1}{g(x)^2}\cdot g'(x)\right)
= \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2},

இதுவே வகையிடலின் வகுத்தல் விதியாகும்.

நேர்மாறுச் சார்புகளின் வகைக்கெழுக்கள்[தொகு]

y = g(x) சார்புக்கு, நேர்மாறுச் சார்பு உள்ளது எனில் அதனை f எனக் கொண்டால், x = f(y) ஆகும். f இன் வகைக்கெழுவை, g இன் வகைக்கெழு மூலம் காண முடியும்.

g இன் நேர்மாறுச் சார்பு f என்பதால்,

f(g(x)) = x.

எனவே இருபுறமுமுள்ள சார்புகளின் வகைக்கெழுக்களும் சமமாக இருக்கும். x இன் வகைக்கெழு 1.

f'(g(x))g'(x) = 1.
 f(y) = x எனப் பிரதியிட,
\begin{align}
f'(g(f(y)))g'(f(y)) &= 1 \\
f'(y)g'(f(y)) &= 1 \\
f'(y) = \frac{1}{g'(f(y))}.
\end{align}

எடுத்துக்காட்டு:

 g(x) = e^x எனில்,

இதன் நேர்மாறுச் சார்பு:  f(y) = \ln y

மேலும் வகைக்கெழு,

 g'(x) = e^x .

எனவே நேர்மாறுச் சார்பின் வகைக்கெழு காண மேலே தரப்பட்டுள்ள வாய்ப்பாட்டின்படி:

\frac{d}{dy}\ln y = \frac{1}{e^{\ln y}} = \frac{1}{y}.

g , அதன் நேர்மாறு f இரண்டும் வகையிடத் தக்கவையாக இருந்தால் இவ்வாய்ப்பாடு உண்மையாகும். இரண்டில் ஏதேனும் ஒன்று வகையிடத் தக்கதாக இல்லையெனில் இவ்வாய்ப்பாடு பயனளிக்காது.

எடுத்துக்காட்டாக,

 g(x) = x^3 . எனில் அதன் நேர்மாறுச் சார்பு:
 f(y) = y^\frac{1}{3}

இச்சார்பு x=0 இல் வகையிடத்தக்கது இல்லை. எனவே சார்பு f இன் வகைக்கெழுவை x=0 இல் மேற்கூறப்பட்ட வாய்ப்பாட்டினைப் பயன்படுத்திக் காண முற்பட்டால் 1/0 எனக் கிடைக்கும். இது வரையறுக்கப்படாத ஒன்றாகும். எனவே இங்கு இவ்வாய்ப்பாட்டைப் பயன்படுத்த முடியாது.

உயர்வரிசை வகைக்கெழுக்கள்[தொகு]

ஃபா டி புருனோவின் வாய்ப்பாடு, சங்கிலி விதியை உயர்வரிசை வகைக்கெழுக்களுக்கு பொதுமைப்படுத்துகிறது.

\frac{d (f \circ g) }{dx} = \frac{df}{dg}\frac{dg}{dx}

  \frac{d^2 (f \circ g) }{d x^2}
  = \frac{d^2 f}{d g^2}\left(\frac{dg}{dx}\right)^2
    + \frac{df}{dg}\frac{d^2 g}{dx^2}

  \frac{d^3 (f \circ g) }{d x^3}
  = \frac{d^3 f}{d g^3} \left(\frac{dg}{dx}\right)^3
    + 3 \frac{d^2 f}{d g^2} \frac{dg}{dx} \frac{d^2 g}{d x^2}
    + \frac{df}{dg} \frac{d^3 g}{d x^3}

  \frac{d^4 (f \circ g) }{d x^4}
  =\frac{d^4 f}{dg^4} \left(\frac{dg}{dx}\right)^4
    + 6 \frac{d^3 f}{d g^3} \left(\frac{dg}{dx}\right)^2 \frac{d^2 g}{d x^2}
    + \frac{d^2 f}{d g^2} \left\{ 4 \frac{dg}{dx} \frac{d^3 g}{dx^3} + 3\left(\frac{d^2 g}{dx^2}\right)^2\right\}
    + \frac{df}{dg}\frac{d^4 g}{dx^4}.

உயர்பரிமாணங்களில் சங்கிலி விதி[தொகு]

உயர்பரிமாணங்களுக்கு சங்கிலி விதியின் எளிமையான பொதுமைப்படுத்தலில் முழு வகைக்கெழு பயன்படுத்தப்படுகிறது. ஒரு சார்பின் முழு வகைக்கெழு அச்சார்பு எல்லாத் திசைகளிலும் எவ்வாறு மாறுகிறது என்பதைக் குறிக்கும் நேரியல் உருமாற்றமாகும்.

f : RmRkg : RnRm இரண்டும் வகையிடத்தக்க சார்புகள். D முதல் வகைக்கெழுச் செயலி எனில்,

Rn இல் அமைந்த ஒரு புள்ளி a எனில், உயர்பரிமாணச் சங்கிலி விதியின் வாய்ப்பாடு:

D_{\mathbf{a}}(f \circ g) = D_{g(\mathbf{a})}f \circ D_{\mathbf{a}}g,

அல்லது சுருக்கமாக,

D(f \circ g) = Df \circ Dg.

ஜேக்கோபிய அணிகளின் வாயிலாக இவ்விதி:

J_{\mathbf{a}}(f \circ g) = J_{g(\mathbf{a})}(f)J_{\mathbf{a}}(g),

பகுதி வகைக்கெழுவிற்கு:

y = f(u) = (f1(u), ..., fk(u)) மற்றும் u = g(x) = (g1(x), ..., gm(x)) எனில்:

\frac{\partial(f_1, \ldots, f_k)}{\partial(x_1, \ldots, x_n)} = \frac{\partial(f_1, \ldots, f_k)}{\partial(u_1, \ldots, u_m)}\frac{\partial(g_1, \ldots, g_m)}{\partial(x_1, \ldots, x_n)}.
\frac{\partial(f_1, \ldots, f_k)}{\partial x_i} = \frac{\partial(f_1, \ldots, f_k)}{\partial(u_1, \ldots, u_m)}\frac{\partial(g_1, \ldots, g_m)}{\partial x_i}.
\frac{\partial(f_1, \ldots, f_k)}{\partial x_i} = \sum_{\ell = 1}^m \frac{\partial(f_1, \ldots, f_k)}{\partial u_\ell}\frac{\partial g_\ell}{\partial x_i}.

k = 1 எனில், f ஒரு மெய்மதிப்புச் சார்பாகும். இதற்கான வாய்ப்பாடு:

\frac{\partial f}{\partial x_i} = \sum_{\ell = 1}^m \frac{\partial f}{\partial u_\ell}\frac{\partial g_\ell}{\partial x_i}.

எடுத்துக்காட்டு[தொகு]

\,u = x^2 + 2y, \,x = r\sin(t), \,y = \sin^2(t)

சங்கிலி விதியைப் பயன்படுத்த:

\frac{\partial u}{\partial r}=\frac{\partial u}{\partial x}\frac{\partial x}{\partial r}+\frac{\partial u}{\partial y}\frac{\partial y}{\partial r} = \left(2x\right)\left(\sin(t)\right)+\left(2\right)\left(0\right)=2r\sin^2(t)

மற்றும்

\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial u}{\partial y}\frac{\partial y}{\partial t} = \left(2x\right)\left(r\cos(t)\right)+\left(2\right)\left(2\sin(t)\cos(t)\right)
 = 2\left(r\sin(t)\right)r\cos(t)+4\sin(t)\cos(t) = 2\left(r^2+2\right)\sin(t)\cos(t).

பலமாறிச் சார்புகளின் உயர்வரிசை வகைக்கெழுக்கள்[தொகு]

ஃபா டி புருனோவின் வாய்ப்பாடு ஒரு மாறியில் அமைந்த சார்புகளின் உயர்வரிசை வகைடிடலைப் பலமாறிகளில் அமைந்த சார்புகளுக்குப் பொதுமைப்படுத்துகிறது.

u = g(x) இன் சார்பாக f இருந்தால் fg இன் இரண்டாம் வகைக்கெழு:

\frac{\partial^2 (f \circ g)}{\partial x_i \partial x_j} = \sum_k \frac{\partial f}{\partial u_k}\frac{\partial^2 g_k}{\partial x_i \partial x_j} + \sum_{k, \ell} \frac{\partial^2 f}{\partial u_k \partial u_\ell}\frac{\partial g_k}{\partial x_i}\frac{\partial g_\ell}{\partial x_j}.

மேற்கோள்கள்[தொகு]

  1. "A Semiotic Reflection on the Didactics of the Chain Rule". The Montana Mathematics Enthusiast 7: 321–332. 2010. http://www.math.umt.edu/tmme/vol7no2and3/9_RodriguezFernandez_TMMEvol7nos2and3_pp.321_332.pdf. 
  2. Apostol, Tom (1974). Mathematical analysis (2nd ed. ed.). Addison Wesley. Theorem 5.5. 

வெளி இணைப்புகள்[தொகு]