கனசெவ்வகம்

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்

வடிவவியலில் கனசெவ்வகம் அல்லது கனவுரு (cuboid) என்பது, ஆறுமுகங்கள் கொண்ட ஒரு குவிவுப் பன்முகத்திண்மம் ஆகும். கணித இலக்கியத்தில் கனசெவ்வகத்திற்கு ஒத்திசைவில்லாத ஆனால் பொருத்தமான இருவிதமான வரையறைகள் உள்ளன. உச்சிகள் மற்றும் விளிம்புகளின் திசைப்போக்கற்ற வரைபடங்கள், கனசதுரத்தின் வரைபடத்துடன் சமஅளவை கொண்ட நாற்கரங்களாக, ஆறுமுகங்களும் இருந்தால் போதுமானது எனப் பொது வரையறை கூறுகிறது. [1] எனினும் மற்றொரு வரையறை ஒரு சிறப்பு வகையாக, கனசெவ்வகம் என்பது ஆறுமுகங்களையும் செவ்வகங்களாகக் கொண்ட அறுமுகத்திண்மத்தைக் குறிக்கும் என்கிறது. இந்த கட்டுப்படுத்தப்பட்ட கனசெவ்வகமானது, நேர் கனசெவ்வகம், செவ்வகப்பெட்டி, செவ்வக அறுமுகத்திண்மம், நேர் செவ்வகப்பட்டகம் அல்லது செவ்வக இணைகரத்திண்மம் என்றும் அழைக்கப்படுகிறது.[2]

பொது கனசெவ்வகங்கள்[தொகு]

ஆய்லரின் வாய்ப்பாட்டின்படி:

ஒரு குவிவுப் பன்முகத்திண்மத்தின் முகங்கள், உச்சிகள் மற்றும் விளிம்புகளுக்கு இடையேயுள்ள தொடர்பு:

 F + V - E = 2.

இதில் முகங்களின் எண்ணிக்கை-( F); உச்சிகளின் எண்ணிக்கை- ( V ); விளிம்புகளின் எண்ணிக்கை- ( E ).

கனசதுரத்தைப் போலவே கனசெவ்வகத்திற்கும் 6 முகங்கள், 8 உச்சிகள் மற்றும் 12 விளிம்புகள் உள்ளதால் ஆய்லர் வாய்ப்பாட்டின்படி கனசெவ்வகத்திற்கு:

 6 + 8 - 12 = 2. என்பது உண்மையாகிறது.

கனசெவ்வகங்களைப் போலவே இணைகரத்திண்மமும் உச்சி வெட்டப்பட்ட சதுர பிரமிடும் இத்தகைய அறுமுகத்திண்மங்களாகும்.

நேர் கனசெவ்வகங்கள்[தொகு]

Rectangular Cuboid
Rectangular cuboid
வகை பட்டகம்
முகங்கள் 6 செவ்வகங்கள்
விளிம்புகள் 12
உச்சிகள் 8
சமச்சீர் குலம் D2h, [2,2], (*222)
Schläfli symbol {}x{}x{}
Coxeter-Dynkin diagram CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
பண்புகள் குவிவானது, zonohedron, சமகோணங்களுடையது

ஒரு நேர் கனசெவ்வகத்தின் அனைத்துக் கோணங்களும் செங்கோணங்களாகவும் எதிரெதிர் முகங்கள் சர்வசமமாகவும் இருக்கும். அதாவது ஒவ்வொரு முகமும் செவ்வகமாக இருக்கும்.

குறைந்தது இரு முகங்களாவது சதுரங்களாகக் கொண்ட நேர் கனசெவ்வகங்கள், சதுர கனசெவ்வகம், சதுரப் பெட்டி அல்லது நேர் சதுரப் பட்டகம் என அழைக்கப்படுகின்றன. ஆறுமுகங்களும் சதுரமாகக் கொண்ட கனசதுரமானது சதுர கனசெவ்வகங்களில் ஒரு சிறப்பு வகையாகும்.

கனசெவ்வகத்தின் அளவுகள் a, b மற்றும் c எனில்:

கனஅளவு: abc

புறப்பரப்பு: 2ab + 2bc + 2ac.

வெளி மூலைவிட்டத்தின் (space diagonal) நீளம்:

AC' (நீலம்) -வெளி மூலைவிட்டம். AC (சிவப்பு) -முக மூலைவிட்டம்


d = \sqrt{a^2+b^2+c^2}.\

பெட்டிகள், அலமாரிகள், அறைகள், கட்டிடங்கள் போன்ற அமைப்புகளில் கனசெவ்வக வடிவங்கள் பயன்படுத்தப்படுகின்றன. ஒரு கனசெவ்வக வடிவப் பொருளுக்குள் சிறிய கனசெவ்வக வடிவங்கள் பல அடங்குவதால் இவ்வடிவம் அதிக அளவில் பயன்படுத்தப்படுகிறது.

எடுத்துக்காட்டு:

செவ்வகப்பெட்டியுள் அடுக்கப்பட்டுள்ள சர்க்கரைக் கட்டிகள், பெரிய பெட்டிக்குள் அடுக்கப்பட்டுள்ள சிறிய பெட்டிகள், ஒரு அறையிலுள்ள அலமாரி, கட்டிடங்களுக்குள் அமையும் அறைகள் போன்றவை.

விளிம்புகள், முகங்கள் மற்றும் மூலைவிட்டங்களின் நீளங்களை முழு எண்களாகக் கொண்ட கனசெவ்வகம் ஆய்லர் பிரிக்(Euler brick) எனப்படும்.

எடுத்துக்காட்டு:

ஆய்லர் பிரிக்காக அமையும் ஒரு கனசெவ்வகத்தின் அளவுகள்: 44, 117 மற்றும் 240.

இக்கனசெவ்வகத்தின் வெளி மூலைவிட்டத்தின் நீளமும் முழுஎண்ணாக அமைந்தால் அக்கனசெவ்வகமானது கச்சிதமான கனசெவ்வகம் எனப்படும். ஆனால் கச்சிதமானதொரு கனசெவ்வகம் உள்ளதா என்பதுபற்றி இதுவரை அறியப்படவில்லை.

மேலும் பார்க்க[தொகு]

மேற்கோள்கள்[தொகு]

  1. Robertson, Stewart Alexander (1984), Polytopes and Symmetry, Cambridge University Press, p. 75, ISBN 9780521277396 
  2. Dupuis, Nathan Fellowes (1893), Elements of Synthetic Solid Geometry, Macmillan, p. 53 

வெளி இணைப்புகள்[தொகு]

"http://ta.wikipedia.org/w/index.php?title=கனசெவ்வகம்&oldid=1364178" இருந்து மீள்விக்கப்பட்டது