அலகு அதிபரவளையம்
x
2
−
y
2
=
1
{\displaystyle \scriptstyle x^{2}\ -\ y^{2}\ =\ 1}
இன் மையத்தின் வழியே செல்லும் கதிர், அதிபரவளையத்தை சந்திக்கும் புள்ளி
(
cosh
a
,
sinh
a
)
.
{\displaystyle \scriptstyle (\cosh \,a,\,\sinh \,a).}
இதில்
a
{\displaystyle \scriptstyle a}
இன் மதிப்பு கதிர், அதிபரவளையம்,
x
{\displaystyle \scriptstyle x}
-அச்சு இவற்றுக்கு இடைப்பட்ட பரப்பின் இருமடங்கு ஆகும்.
கணிதத்தில் அதிபரவளைவுச் சார்பு கள் அல்லது அதிபரவளையச் சார்பு கள் (hyperbolic functions ) என்பன வட்டச் சார்புகள் என அழைக்கப்படும் முக்கோணவியல் சார்புகளுடன் ஒத்த சார்புகள் ஆகும்.
அடிப்படை அதிபரவளையச் சார்புகள்[ 1] :
அதிபரவளைவு சைன்: "sinh"
அதிபரவளைவு கொசைன்: "cosh"
அதிபரவளைவு டேன்ஜெண்ட்: "tanh"
அதிபரவளைவு கொசீக்கெண்ட்: "csch" அல்லது "cosech"
அதிபரவளைவு சீக்கெண்ட்: "sech"
அதிபரவளைவு கோடேன்ஜெண்ட்: "coth"
ஒவ்வொரு அதிபரவளையச் சார்பின் நேர்மாறுச் சார்பினைக் குறிப்பதற்கு அச்சார்போடு area hyperbolic (அ) "ar" (அ) "a" (அ) "arc" என்ற முன்னொட்டுகளைச் சேர்த்து எழுதப்படுகிறது.[ 2] (cos t , sin t ) என்ற புள்ளிகள் அலகு வட்டத்தை உருவாக்குவது போல, புள்ளிகள் (cosh t , sinh t ), சமபக்க அதிபரவளைவின் வலப்பாதிப் பகுதியை உருவாக்குகின்றன.
அதிபரவளையச் சார்புகள், வின்சென்சோ ரிக்கட்டி மற்றும் ஜோகன் கெயின்ரிச் லாம்பெர்டு எனும் இரு கணிதவியலாளர்களால் தனித்தனியே 1760 களில் கண்டறியப்பட்டது.[ 3] ரிக்கட்டி, வட்டச் சார்புகளைக் குறிப்பதற்கு Sc. மற்றும் Cc. ([co]sinus circulare ) குறியீடுகளையும், அதிபரவளையச் சார்புகளுக்கு Sh. மற்றும் Ch. ([co]sinus hyperbolico ) ம் பயன்படுத்தினார். லாம்பெர்டு அதே பெயர்களை அப்படியே எடுத்துக் கொண்டு குறியீடுகளை மட்டும் தற்போது பயன்படுத்தப்படும் குறியீடுகளுக்கு மாற்றினார்.[ 4] சுருக்கக் குறியீடுகள் sh , ch இன்றளவும் பிரெஞ்சு, உருசியா போன்ற சில மொழிகளில் பயன்படுத்தப்படுகிறன.
திட்ட இயற்கணித வடிவம்[ தொகு ]
அதிபரவளையச் சார்பு:
அதிபரவளைய சைன் (Hyperbolic sine):
sinh
x
=
e
x
−
e
−
x
2
=
e
2
x
−
1
2
e
x
=
1
−
e
−
2
x
2
e
−
x
{\displaystyle \sinh x={\frac {e^{x}-e^{-x}}{2}}={\frac {e^{2x}-1}{2e^{x}}}={\frac {1-e^{-2x}}{2e^{-x}}}}
அதிபரவளைய கொசைன் (Hyperbolic cosine):
cosh
x
=
e
x
+
e
−
x
2
=
e
2
x
+
1
2
e
x
=
1
+
e
−
2
x
2
e
−
x
{\displaystyle \cosh x={\frac {e^{x}+e^{-x}}{2}}={\frac {e^{2x}+1}{2e^{x}}}={\frac {1+e^{-2x}}{2e^{-x}}}}
அதிபரவளைய டேன்ஜெண்ட் (Hyperbolic tangent):
tanh
x
=
sinh
x
cosh
x
=
e
x
−
e
−
x
e
x
+
e
−
x
=
e
2
x
−
1
e
2
x
+
1
=
1
−
e
−
2
x
1
+
e
−
2
x
{\displaystyle \tanh x={\frac {\sinh x}{\cosh x}}={\frac {e^{x}-e^{-x}}{e^{x}+e^{-x}}}={\frac {e^{2x}-1}{e^{2x}+1}}={\frac {1-e^{-2x}}{1+e^{-2x}}}}
அதிபரவளைய கோடேன்ஜெண்ட் (Hyperbolic cotangent):
coth
x
=
cosh
x
sinh
x
=
e
x
+
e
−
x
e
x
−
e
−
x
=
e
2
x
+
1
e
2
x
−
1
=
1
+
e
−
2
x
1
−
e
−
2
x
{\displaystyle \coth x={\frac {\cosh x}{\sinh x}}={\frac {e^{x}+e^{-x}}{e^{x}-e^{-x}}}={\frac {e^{2x}+1}{e^{2x}-1}}={\frac {1+e^{-2x}}{1-e^{-2x}}}}
அதிபரவளைய சீக்கெண்ட் (Hyperbolic secant):
sech
x
=
(
cosh
x
)
−
1
=
2
e
x
+
e
−
x
=
2
e
x
e
2
x
+
1
=
2
e
−
x
1
+
e
−
2
x
{\displaystyle \operatorname {sech} \,x=\left(\cosh x\right)^{-1}={\frac {2}{e^{x}+e^{-x}}}={\frac {2e^{x}}{e^{2x}+1}}={\frac {2e^{-x}}{1+e^{-2x}}}}
அதிபரவளைய கொசீக்கெண்ட் (Hyperbolic cosecant):
csch
x
=
(
sinh
x
)
−
1
=
2
e
x
−
e
−
x
=
2
e
x
e
2
x
−
1
=
2
e
−
x
1
−
e
−
2
x
{\displaystyle \operatorname {csch} \,x=\left(\sinh x\right)^{-1}={\frac {2}{e^{x}-e^{-x}}}={\frac {2e^{x}}{e^{2x}-1}}={\frac {2e^{-x}}{1-e^{-2x}}}}
கற்பனை வட்டக் கோணங்கள் மூலமாகவும் அதிபரவளையச் சார்புகளை எழுதலாம்:
sinh
x
=
−
i
sin
i
x
{\displaystyle \sinh x=-{\rm {i}}\sin {\rm {i}}x\!}
cosh
x
=
cos
i
x
{\displaystyle \cosh x=\cos {\rm {i}}x\!}
tanh
x
=
−
i
tan
i
x
{\displaystyle \tanh x=-{\rm {i}}\tan {\rm {i}}x\!}
coth
x
=
i
cot
i
x
{\displaystyle \coth x={\rm {i}}\cot {\rm {i}}x\!}
sech
x
=
sec
i
x
{\displaystyle \operatorname {sech} \,x=\sec {{\rm {i}}x}\!}
csch
x
=
i
csc
i
x
{\displaystyle \operatorname {csch} \,x={\rm {i}}\,\csc \,{\rm {i}}x\!}
இங்கு i என்பது கற்பனை அலகு ; i 2 = −1.
ஒற்றை மற்றும் இரட்டைச் சார்புகள்:
sinh
(
−
x
)
=
−
sinh
x
cosh
(
−
x
)
=
cosh
x
{\displaystyle {\begin{aligned}\sinh(-x)&=-\sinh x\\\cosh(-x)&=\cosh x\end{aligned}}}
எனவே:
tanh
(
−
x
)
=
−
tanh
x
coth
(
−
x
)
=
−
coth
x
sech
(
−
x
)
=
sech
x
csch
(
−
x
)
=
−
csch
x
{\displaystyle {\begin{aligned}\tanh(-x)&=-\tanh x\\\coth(-x)&=-\coth x\\\operatorname {sech} (-x)&=\operatorname {sech} x\\\operatorname {csch} (-x)&=-\operatorname {csch} x\end{aligned}}}
cosh x மற்றும் sech x இரண்டும் இரட்டைச் சார்புகளாகவும் மற்ற அதிபரவளையச் சார்புகள் ஒற்றைச் சார்புகளாகவும் இருப்பதைக் காணலாம்.
arsech
x
=
arcosh
1
x
arcsch
x
=
arsinh
1
x
arcoth
x
=
artanh
1
x
{\displaystyle {\begin{aligned}\operatorname {arsech} x&=\operatorname {arcosh} {\frac {1}{x}}\\\operatorname {arcsch} x&=\operatorname {arsinh} {\frac {1}{x}}\\\operatorname {arcoth} x&=\operatorname {artanh} {\frac {1}{x}}\end{aligned}}}
அதிபரவளைய சைன் மற்றும் கொசைன் சார்புகள் இரண்டும் பின்வரும் முற்றொருமையை நிறைவு செய்கின்றன:
cosh
2
x
−
sinh
2
x
=
1
{\displaystyle \cosh ^{2}x-\sinh ^{2}x=1\,}
இம்முற்றொருமை பித்தாகரசின் முக்கோணவியல் முற்றொருமையை ஒத்துள்ளது.
மேலும் பிற சார்புகளுக்கு:
sech
2
x
=
1
−
tanh
2
x
csch
2
x
=
coth
2
x
−
1
{\displaystyle {\begin{aligned}\operatorname {sech} ^{2}x&=1-\tanh ^{2}x\\\operatorname {csch} ^{2}x&=\coth ^{2}x-1\end{aligned}}}
1
2
f
″
=
f
3
−
f
;
f
(
0
)
=
f
′
(
∞
)
=
0
{\displaystyle {\frac {1}{2}}f''=f^{3}-f;\quad f(0)=f'(\infty )=0}
இன் தீர்வாக tanh அமைகிறது.[ 5]
cosh (x ) இன் கீழமையும் பரப்பு கீழ்க்கண்டவாறு வில்லின் நீளத்திற்குச் சமமாக இருக்கும்:[ 6]
area
=
∫
a
b
cosh
(
x
)
d
x
=
∫
a
b
1
+
(
d
d
x
cosh
(
x
)
)
2
d
x
=
வில்லின் நீளம்
{\displaystyle {\text{area}}=\int _{a}^{b}{\cosh {(x)}}\ dx=\int _{a}^{b}{\sqrt {1+\left({\frac {d}{dx}}\cosh {(x)}\right)^{2}}}\ dx={\text{வில்லின் நீளம்}}}
cosh
(
x
+
y
)
=
sinh
x
sinh
y
+
cosh
x
cosh
y
sinh
(
x
+
y
)
=
cosh
x
sinh
y
+
sinh
x
cosh
y
{\displaystyle {\begin{aligned}\cosh(x+y)&=\sinh x\sinh y+\cosh x\cosh y\\\sinh(x+y)&=\cosh x\sinh y+\sinh x\cosh y\end{aligned}}}
குறிப்பாக,
cosh
(
2
x
)
=
sinh
2
x
+
cosh
2
x
=
2
sinh
2
x
+
1
=
2
cosh
2
x
−
1
sinh
(
2
x
)
=
2
sinh
x
cosh
x
{\displaystyle {\begin{aligned}\cosh(2x)&=\sinh ^{2}{x}+\cosh ^{2}{x}=2\sinh ^{2}x+1=2\cosh ^{2}x-1\\\sinh(2x)&=2\sinh x\cosh x\end{aligned}}}
cosh மற்றும் sinh இன் கூடுதலும் வித்தியாசமும்:
cosh
x
+
sinh
x
=
e
x
cosh
x
−
sinh
x
=
e
−
x
{\displaystyle {\begin{aligned}\cosh x+\sinh x&=e^{x}\\\cosh x-\sinh x&=e^{-x}\end{aligned}}}
மடக்கைகளாக-நேர்மாறுச் சார்புகள்[ தொகு ]
arsinh
(
x
)
=
ln
(
x
+
x
2
+
1
)
arcosh
(
x
)
=
ln
(
x
+
x
2
−
1
)
;
x
≥
1
artanh
(
x
)
=
1
2
ln
(
1
+
x
1
−
x
)
;
|
x
|
<
1
arcoth
(
x
)
=
1
2
ln
(
x
+
1
x
−
1
)
;
|
x
|
>
1
arsech
(
x
)
=
ln
(
1
x
+
1
−
x
2
x
)
;
0
<
x
≤
1
arcsch
(
x
)
=
ln
(
1
x
+
1
+
x
2
|
x
|
)
;
x
≠
0
{\displaystyle {\begin{aligned}\operatorname {arsinh} (x)&=\ln \left(x+{\sqrt {x^{2}+1}}\right)\\\operatorname {arcosh} (x)&=\ln \left(x+{\sqrt {x^{2}-1}}\right);x\geq 1\\\operatorname {artanh} (x)&={\frac {1}{2}}\ln \left({\frac {1+x}{1-x}}\right);\left|x\right|<1\\\operatorname {arcoth} (x)&={\frac {1}{2}}\ln \left({\frac {x+1}{x-1}}\right);\left|x\right|>1\\\operatorname {arsech} (x)&=\ln \left({\frac {1}{x}}+{\frac {\sqrt {1-x^{2}}}{x}}\right);0<x\leq 1\\\operatorname {arcsch} (x)&=\ln \left({\frac {1}{x}}+{\frac {\sqrt {1+x^{2}}}{\left|x\right|}}\right);x\neq 0\end{aligned}}}
d
d
x
sinh
x
=
cosh
x
{\displaystyle {\frac {d}{dx}}\sinh x=\cosh x\,}
d
d
x
cosh
x
=
sinh
x
{\displaystyle {\frac {d}{dx}}\cosh x=\sinh x\,}
d
d
x
tanh
x
=
1
−
tanh
2
x
=
sech
2
x
=
1
/
cosh
2
x
{\displaystyle {\frac {d}{dx}}\tanh x=1-\tanh ^{2}x=\operatorname {sech} ^{2}x=1/\cosh ^{2}x\,}
d
d
x
coth
x
=
1
−
coth
2
x
=
−
csch
2
x
=
−
1
/
sinh
2
x
{\displaystyle {\frac {d}{dx}}\coth x=1-\coth ^{2}x=-\operatorname {csch} ^{2}x=-1/\sinh ^{2}x\,}
d
d
x
csch
x
=
−
coth
x
csch
x
{\displaystyle {\frac {d}{dx}}\ \operatorname {csch} \,x=-\coth x\ \operatorname {csch} \,x\,}
d
d
x
sech
x
=
−
tanh
x
sech
x
{\displaystyle {\frac {d}{dx}}\ \operatorname {sech} \,x=-\tanh x\ \operatorname {sech} \,x\,}
d
d
x
arsinh
x
=
1
x
2
+
1
{\displaystyle {\frac {d}{dx}}\,\operatorname {arsinh} \,x={\frac {1}{\sqrt {x^{2}+1}}}}
d
d
x
arcosh
x
=
1
x
2
−
1
{\displaystyle {\frac {d}{dx}}\,\operatorname {arcosh} \,x={\frac {1}{\sqrt {x^{2}-1}}}}
d
d
x
artanh
x
=
1
1
−
x
2
{\displaystyle {\frac {d}{dx}}\,\operatorname {artanh} \,x={\frac {1}{1-x^{2}}}}
d
d
x
arcsch
x
=
−
1
|
x
|
1
+
x
2
{\displaystyle {\frac {d}{dx}}\,\operatorname {arcsch} \,x=-{\frac {1}{\left|x\right|{\sqrt {1+x^{2}}}}}}
d
d
x
arsech
x
=
−
1
x
1
−
x
2
{\displaystyle {\frac {d}{dx}}\,\operatorname {arsech} \,x=-{\frac {1}{x{\sqrt {1-x^{2}}}}}}
d
d
x
arcoth
x
=
1
1
−
x
2
{\displaystyle {\frac {d}{dx}}\,\operatorname {arcoth} \,x={\frac {1}{1-x^{2}}}}
அனைத்து அதிபரவளையச் சார்புகளின் தொகையீடுகளுக்கு அதிபரவளைவுச் சார்புகளின் தொகையீடுகளின் பட்டியல் பார்க்கவும்.
∫
sinh
(
a
x
)
d
x
=
a
−
1
cosh
(
a
x
)
+
C
∫
cosh
(
a
x
)
d
x
=
a
−
1
sinh
(
a
x
)
+
C
∫
tanh
(
a
x
)
d
x
=
a
−
1
ln
(
cosh
(
a
x
)
)
+
C
∫
coth
(
a
x
)
d
x
=
a
−
1
ln
(
sinh
(
a
x
)
)
+
C
∫
sech
(
a
x
)
d
x
=
a
−
1
arctan
(
sinh
(
a
x
)
)
+
C
∫
csch
(
a
x
)
d
x
=
a
−
1
ln
(
tanh
(
a
x
2
)
)
+
C
{\displaystyle {\begin{aligned}\int \sinh(ax)\,dx&=a^{-1}\cosh(ax)+C\\\int \cosh(ax)\,dx&=a^{-1}\sinh(ax)+C\\\int \tanh(ax)\,dx&=a^{-1}\ln(\cosh(ax))+C\\\int \coth(ax)\,dx&=a^{-1}\ln(\sinh(ax))+C\\\int \operatorname {sech} (ax)\,dx&=a^{-1}\arctan(\sinh(ax))+C\\\int \operatorname {csch} (ax)\,dx&=a^{-1}\ln \left(\tanh \left({\frac {ax}{2}}\right)\right)+C\end{aligned}}}
∫
d
u
a
2
+
u
2
=
sinh
−
1
(
u
a
)
+
C
∫
d
u
u
2
−
a
2
=
cosh
−
1
(
u
a
)
+
C
∫
d
u
a
2
−
u
2
=
a
−
1
tanh
−
1
(
u
a
)
+
C
;
u
2
<
a
2
∫
d
u
a
2
−
u
2
=
a
−
1
coth
−
1
(
u
a
)
+
C
;
u
2
>
a
2
∫
d
u
u
a
2
−
u
2
=
−
a
−
1
sech
−
1
(
u
a
)
+
C
∫
d
u
u
a
2
+
u
2
=
−
a
−
1
csch
−
1
|
u
a
|
+
C
{\displaystyle {\begin{aligned}\int {\frac {du}{\sqrt {a^{2}+u^{2}}}}&=\sinh ^{-1}\left({\frac {u}{a}}\right)+C\\\int {\frac {du}{\sqrt {u^{2}-a^{2}}}}&=\cosh ^{-1}\left({\frac {u}{a}}\right)+C\\\int {\frac {du}{a^{2}-u^{2}}}&=a^{-1}\tanh ^{-1}\left({\frac {u}{a}}\right)+C;u^{2}<a^{2}\\\int {\frac {du}{a^{2}-u^{2}}}&=a^{-1}\coth ^{-1}\left({\frac {u}{a}}\right)+C;u^{2}>a^{2}\\\int {\frac {du}{u{\sqrt {a^{2}-u^{2}}}}}&=-a^{-1}\operatorname {sech} ^{-1}\left({\frac {u}{a}}\right)+C\\\int {\frac {du}{u{\sqrt {a^{2}+u^{2}}}}}&=-a^{-1}\operatorname {csch} ^{-1}\left|{\frac {u}{a}}\right|+C\end{aligned}}}
இவற்றில் C -தொகையீட்டு மாறிலி.
அதிபரவளையச் சார்புகளை டெய்லர் தொடர்களாக எழுத முடியும்:
sinh
x
=
x
+
x
3
3
!
+
x
5
5
!
+
x
7
7
!
+
⋯
=
∑
n
=
0
∞
x
2
n
+
1
(
2
n
+
1
)
!
{\displaystyle \sinh x=x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+{\frac {x^{7}}{7!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{(2n+1)!}}}
cosh
x
=
1
+
x
2
2
!
+
x
4
4
!
+
x
6
6
!
+
⋯
=
∑
n
=
0
∞
x
2
n
(
2
n
)
!
{\displaystyle \cosh x=1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+{\frac {x^{6}}{6!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n}}{(2n)!}}}
sinh மற்றும் cosh தொடர்களின் கூடுதல், படிக்குறிச் சார்பின் டெய்லர் தொடராக (முடிவிலாத் தொடராக) இருக்கும்.
tanh
x
=
x
−
x
3
3
+
2
x
5
15
−
17
x
7
315
+
⋯
=
∑
n
=
1
∞
2
2
n
(
2
2
n
−
1
)
B
2
n
x
2
n
−
1
(
2
n
)
!
,
|
x
|
<
π
2
coth
x
=
x
−
1
+
x
3
−
x
3
45
+
2
x
5
945
+
⋯
=
x
−
1
+
∑
n
=
1
∞
2
2
n
B
2
n
x
2
n
−
1
(
2
n
)
!
,
0
<
|
x
|
<
π
sech
x
=
1
−
x
2
2
+
5
x
4
24
−
61
x
6
720
+
⋯
=
∑
n
=
0
∞
E
2
n
x
2
n
(
2
n
)
!
,
|
x
|
<
π
2
csch
x
=
x
−
1
−
x
6
+
7
x
3
360
−
31
x
5
15120
+
⋯
=
x
−
1
+
∑
n
=
1
∞
2
(
1
−
2
2
n
−
1
)
B
2
n
x
2
n
−
1
(
2
n
)
!
,
0
<
|
x
|
<
π
{\displaystyle {\begin{aligned}\tanh x&=x-{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}-{\frac {17x^{7}}{315}}+\cdots =\sum _{n=1}^{\infty }{\frac {2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!}},\left|x\right|<{\frac {\pi }{2}}\\\coth x&=x^{-1}+{\frac {x}{3}}-{\frac {x^{3}}{45}}+{\frac {2x^{5}}{945}}+\cdots =x^{-1}+\sum _{n=1}^{\infty }{\frac {2^{2n}B_{2n}x^{2n-1}}{(2n)!}},0<\left|x\right|<\pi \\\operatorname {sech} \,x&=1-{\frac {x^{2}}{2}}+{\frac {5x^{4}}{24}}-{\frac {61x^{6}}{720}}+\cdots =\sum _{n=0}^{\infty }{\frac {E_{2n}x^{2n}}{(2n)!}},\left|x\right|<{\frac {\pi }{2}}\\\operatorname {csch} \,x&=x^{-1}-{\frac {x}{6}}+{\frac {7x^{3}}{360}}-{\frac {31x^{5}}{15120}}+\cdots =x^{-1}+\sum _{n=1}^{\infty }{\frac {2(1-2^{2n-1})B_{2n}x^{2n-1}}{(2n)!}},0<\left|x\right|<\pi \end{aligned}}}
இங்கு,
B
n
,
{\displaystyle B_{n},\,}
n ஆவது பெர்னொலி எண் (Bernoulli number)
E
n
,
{\displaystyle E_{n},\,}
n ஆவது ஆய்லர் எண் (Euler number)
வட்டச் சார்புகளுடன் ஒப்பீடு[ தொகு ]
வட்டம்:
x
2
+
y
2
=
2
{\displaystyle x^{2}+y^{2}=2}
வட்டமும்
x
y
=
1
{\displaystyle xy=1}
அதிபரவளையமும் (1,1) புள்ளியில் தொடுகின்றன.
வட்டச் சார்புகளையும் தாண்டிய முக்கோணவியலின் நீட்டிப்பாக அதிபரவளையச் சார்புகள் அமைகின்றன. இருவகையான சார்புகளுமே முறையே, வட்டக் கோணம் மற்றும் அதிபரவளையக் கோணத்தைச் சார்ந்திருக்கின்றன. வட்டத்தின் ஆரம் r = √2 இன் வர்க்கமூலமாக இருக்கும் போது, வட்டக்கோணப்பகுதியின் பரப்பளவு
r
2
u
2
=
u
.
{\displaystyle {\frac {r^{2}u}{2}}=u.}
. இத்தகைய வட்டம் (r = √2) அதிபரவளையம் x y = 1 ஐ (1,1) புள்ளியில் தொடுகிறது.(படத்தில் காண்க.) மஞ்சள் பகுதி வட்டக் கோணப்பகுதியின் கோணம் மற்றும் பரப்பையும் தருகிறது. சிவப்புப் பகுதி அதிபரவளையப் பகுதியின் கோணத்தையும் பரப்பையும் தருகிறது.
u கோணத்தை வரையறுக்கும் கதிரை , செம்பக்கமாகக் கொண்ட இரு செங்கோண முக்கோணங்களின் தாங்கு பக்கங்கள் முறையே, வட்டச் சார்புகள் மற்றும் அதிபரவளையச் சார்புகளின் √2 மடங்குகளாக, அதாவது √2cosu, √2sinu மற்றும் (√2coshu, √2sinhu) என உள்ளன. (படத்தில் காண்க)
முக்கோணவியல் சார்புகளின் முற்றொருமைக்களுக்கு ஒத்த பல முற்றொருமைகளை அதிபரவளையச் சார்புகள் நிறைவு செய்கின்றன:
sinh
(
x
+
y
)
=
sinh
(
x
)
cosh
(
y
)
+
cosh
(
x
)
sinh
(
y
)
cosh
(
x
+
y
)
=
cosh
(
x
)
cosh
(
y
)
+
sinh
(
x
)
sinh
(
y
)
tanh
(
x
+
y
)
=
tanh
(
x
)
+
tanh
(
y
)
1
+
tanh
(
x
)
tanh
(
y
)
{\displaystyle {\begin{aligned}\sinh(x+y)&=\sinh(x)\cosh(y)+\cosh(x)\sinh(y)\\\cosh(x+y)&=\cosh(x)\cosh(y)+\sinh(x)\sinh(y)\\\tanh(x+y)&={\frac {\tanh(x)+\tanh(y)}{1+\tanh(x)\tanh(y)}}\end{aligned}}}
sinh
2
x
=
2
sinh
x
cosh
x
cosh
2
x
=
cosh
2
x
+
sinh
2
x
=
2
cosh
2
x
−
1
=
2
sinh
2
x
+
1
tanh
2
x
=
2
tanh
x
1
+
tanh
2
x
{\displaystyle {\begin{aligned}\sinh 2x&=2\sinh x\cosh x\\\cosh 2x&=\cosh ^{2}x+\sinh ^{2}x=2\cosh ^{2}x-1=2\sinh ^{2}x+1\\\tanh 2x&={\frac {2\tanh x}{1+\tanh ^{2}x}}\end{aligned}}}
அரைக்கோண முற்றொருமைகள்:[ 7]
sinh
x
2
=
1
2
(
cosh
x
−
1
)
{\displaystyle \sinh {\frac {x}{2}}={\sqrt {{\frac {1}{2}}(\cosh x-1)}}\,}
:
cosh
x
2
=
1
2
(
cosh
x
+
1
)
{\displaystyle \cosh {\frac {x}{2}}={\sqrt {{\frac {1}{2}}(\cosh x+1)}}\,}
tanh
x
2
=
cosh
x
−
1
cosh
x
+
1
=
sinh
x
cosh
x
+
1
=
cosh
x
−
1
sinh
x
=
coth
x
−
csch
x
.
{\displaystyle \tanh {\frac {x}{2}}={\sqrt {\frac {\cosh x-1}{\cosh x+1}}}={\frac {\sinh x}{\cosh x+1}}={\frac {\cosh x-1}{\sinh x}}=\coth x-\operatorname {csch} x.}
சிக்கலெண்களுக்கு அதிபரவளையச் சார்புகள்[ தொகு ]
ஆய்லரின் வாய்ப்பாடு :
e
i
x
=
cos
x
+
i
sin
x
e
−
i
x
=
cos
x
−
i
sin
x
{\displaystyle {\begin{aligned}e^{ix}&=\cos x+i\;\sin x\\e^{-ix}&=\cos x-i\;\sin x\end{aligned}}}
எனவே:
cosh
i
x
=
1
2
(
e
i
x
+
e
−
i
x
)
=
cos
x
sinh
i
x
=
1
2
(
e
i
x
−
e
−
i
x
)
=
i
sin
x
cosh
(
x
+
i
y
)
=
cosh
(
x
)
cos
(
y
)
+
i
sinh
(
x
)
sin
(
y
)
sinh
(
x
+
i
y
)
=
sinh
(
x
)
cos
(
y
)
+
i
cosh
(
x
)
sin
(
y
)
tanh
i
x
=
i
tan
x
cosh
x
=
cos
i
x
sinh
x
=
−
i
sin
i
x
tanh
x
=
−
i
tan
i
x
{\displaystyle {\begin{aligned}\cosh ix&={\frac {1}{2}}\left(e^{ix}+e^{-ix}\right)=\cos x\\\sinh ix&={\frac {1}{2}}\left(e^{ix}-e^{-ix}\right)=i\sin x\\\cosh(x+iy)&=\cosh(x)\cos(y)+i\sinh(x)\sin(y)\\\sinh(x+iy)&=\sinh(x)\cos(y)+i\cosh(x)\sin(y)\\\tanh ix&=i\tan x\\\cosh x&=\cos ix\\\sinh x&=-i\sin ix\\\tanh x&=-i\tan ix\end{aligned}}}
அதிபரவளையச்ச் சார்புகள், காலமுறையளவு
2
π
i
{\displaystyle 2\pi i}
(
π
i
{\displaystyle \pi i}
-அதிபரவளைய டேன்ஜெண்ட் மற்றும் கோடேன்ஜெண்ட் சார்புகளுக்கு) கொண்ட காலமுறைச் சார்புகளாக உள்ளன. .
சிக்கலெண் தளத்தில் அதிபரவளயச் சார்புகள்
sinh
(
z
)
{\displaystyle \operatorname {sinh} (z)}
cosh
(
z
)
{\displaystyle \operatorname {cosh} (z)}
tanh
(
z
)
{\displaystyle \operatorname {tanh} (z)}
coth
(
z
)
{\displaystyle \operatorname {coth} (z)}
sech
(
z
)
{\displaystyle \operatorname {sech} (z)}
csch
(
z
)
{\displaystyle \operatorname {csch} (z)}
sinh , cosh , tanh
csch , sech , coth
ex மற்றும் e−x இன் சராசரி cosh(x ).
ex மற்றும் e−x இரண்டின் வித்தியாசத்தில் பாதி sinh(x ).