x இன் மெய்மதிப்புகளுக்குச் சார்பு eix சிக்கலெண் தளத்தில் அலகு வட்டமாக அமைகிறது. x என்பது அலகு வட்டத்தின் மீதுள்ள ஒரு புள்ளியை ஆதியுடன் இணைக்கும் கோட்டிற்கும் மெய் அச்சின் நேர்ப் பகுதிக்கும் இடைப்பட்ட கோணம். இக் கோணம் எதிர்கடிகாரதிசையில், ரேடியன் அலகுகளில் அளக்கப்படுகிறது.
ஆய்லரின் வாய்ப்பாட்டின் நிறுவல் (கீழே தரப்பட்டுள்ளது) அடுக்குறிச் சார்பு ez (z ஒரு சிக்கலெண்) மற்றும் sin x, cos x (x ஒரு மெய்யெண்) ஆகியவற்றைச் சார்ந்துள்ளது.
சிக்கலெண் தளத்தில் உள்ள ஒரு புள்ளியைக் கார்ட்டீசியன் ஆயகூறுகள் மூலம் குறிக்கலாம். ஆய்லரின் வாய்ப்பாடு கார்ட்டீசியன் ஆயகூறுகளுக்கும்போலார் ஆயதொலைவுகளுக்கும் இடைப்பட்ட தொடர்பாக அமைகிறது. சிக்கலெண்களை போலார் ஆயதொலைவுகளைக் கொண்டு எழுதுவது, சிக்கலெண்களின் அடுக்குகளின் பெருக்கலை எளிதாக்குகிறது.
z— இன் கோணவீச்சு (argument). அதாவது நேர் x -அச்சுக்கும் திசையன் z க்கும் இடைப்பட்ட எதிர்கடிகார திசையில் ரேடியன் அலகுகளில் அளக்கப்பட்ட கோணம்.
இதன் வாயிலாகச் சிக்கலெண்ணின் மடக்கையை வரையறுக்க ஆய்லரின் வாய்ப்பாட்டைப் பயன்படுத்தலாம். இதற்காக மடக்கைச் சார்பானது அடுக்குக்குறிச் சார்பின் நேர்மாறு என்ற கருத்து பயன்படுத்தப்படுகிறது.
இதில் a , b இரண்டும் சிக்கலெண்கள்.
(z ≠ 0).
இருபுறமும் மடக்கை காண:
ஒரு பன்மதிப்புடையது என்பதால் சிக்கலெண்ணின் மடக்கையும் பன்மதிப்புச் சார்பு ஆகும்.
சைன், கொசைன் மற்றும் அடுக்குக்குறிச் சார்புகளுக்கு இடையேயுள்ள தொடர்பு
ஆய்லரின் வாய்ப்பாடு:
இவ்விரு சமன்பாடுகளையும் கூட்டினால் கொசைன் மதிப்பும், கழித்தால் சைன் மதிப்பும் கீழுள்ளவாறு கிடைக்கிறது.
இவற்றைப் பயன்படுத்தி மெய்ப்புனை கோணங்களுக்கு முக்கோணவியல் சார்புகளை வரையறுக்கலாம்.
y = ix எனப் பதிலிடக் கிடைக்கும் வாய்ப்பாடுகள்:
முக்கோணவியல் சார்புகளைக் கொண்டு கணித அடிப்படைச் செயல்களைச் செய்யும்பொழுது அச்சார்புகளை அடுக்குக்குறிச் சார்புகள் வாயிலாக எடுத்துக் கொள்வது கணக்கிடுதலை எளிதாக்கும். எடுத்துக்காட்டாக:
. இந்த அசைபடத்தில், z=iπ/3 மற்றும் n ஆனது 1 முதல் 100 வரையிலான கூடும் மதிப்புகளை எடுக்கிறது. n இன் மதிப்பு அதிகமாக அதிகமாக புள்ளிகள் சிக்கலெண் தளத்தின் அலகு வட்டத்தை அணுகுகின்றன.
இன் எல்லை வரையறை மூலம் ஆய்லரின் வாய்ப்பாடு நிறுவப்படுகிறது[4]:
.
எனப் பதிலிட்டு, n ஐ மிகப் பெரிய முழு எண்ணாகக் கொண்டால்,
-தொடர்முறையின் கடைசி உறுப்பு eix ஐ நெருங்குகிறது. இத் தொடர்முறையின் உறுப்புகளைச் சிக்கலெண் தளத்தில் குறித்தால் அவை தோராயமாக அலகு வட்டமாக அமையும். ஒவ்வொரு புள்ளியும் அதற்கு முந்தைய புள்ளியிலிருந்து எதிர்கடிகார திசையில் x/n ரேடியனில் அமையும். எனவே n→∞ எனும்போது, தொடர்முறையின் கடைசி உறுப்பான (1 + ix/n)n இன் புள்ளி அலகு வட்டத்தின் மீது +1 புள்ளியிலிருந்து எதிர்கடிகார திசையில் x ரேடியன் அளவில் அமையும். அதாவது அப்புள்ளி cos x + i sin x ஆக இருக்கும். எனவே eix = cos x + i sin x.