பீட்டோ தேற்றம்
வடிவவியலில் பீட்டோ தேற்றத்தின் (Pitot theorem) கூற்றின்படி, ஒரு தொடு நாற்கரத்தின் எதிரெதிர் பக்கங்களின் கூட்டுத்தொகைகள் சமமாக இருக்கும். அதாவது ஒரு நாற்கரத்தின் நான்கு பக்கங்களையும் தொட்டுக்கொண்டவாறு அந்நாற்கரத்துக்குள் ஒரு வட்டம் வரையக் கூடுமானால் அந்நாற்கரத்தின் எதிரெதிர்ப் பக்கங்களின் கூட்டுத்தொகைகள் சமம். மேலும், இக்கூட்டுத்தொகை ஒவ்வொன்றும் நாற்கரத்தின் அரைச்சுற்றளவுக்குச் சமம்.[1]
இத்தேற்றம் பிரெஞ்சுப் பொறியாளர் ஆன்றி பீட்டோ பெயரால் அழைக்கப்படுகிறது. வட்டத்திற்கு வெளியேயுள்ள ஒரு புள்ளியிலிருந்து, வட்டத்திற்கு வரையப்படும் இரு தொடுகோட்டுத் துண்டுகளின் நீளங்களும் சமமாக அமையும் என்பதை அடிப்படையாகக் கொண்டு இத்தேற்றம் அமைந்துள்ளது.
நிறுவல்
[தொகு]ஒரு வட்டத்தின் வெளிப்பக்கமாக அமையும் ஒரு புள்ளியிலிருந்து வட்டத்துக்கு வரையப்படும் இரு தொடுகோடுகளின் நீளங்கள் சமம் (படம் 1). இம்முடிவை பயன்படுத்தி பீட்டோ தேற்றத்தினை விளக்கலாம்:
எடுத்துக்கொள்ளப்பட்டது தொடுநாற்கரம் என்பதால் அதன் உள்வட்டத்திற்கு நான்கு பக்கங்களும் தொடுகோடுகளாக அமையும். மேலும் நாற்கரத்தின் ஒவ்வொரு முனையின் இரு அடுத்துள்ள பக்கங்களும் ஒரே புள்ளியிலிருந்து வரையப்பட்ட உள்வட்டத் தொடுகோடுகள் என்பதால் அவற்றின் நீளங்கள் சமம். நான்கு சோடி சமதொடுகோட்டுத் துண்டுகள் உள்ளன. எதிரெதிர் சோடி பக்க நீளங்களைக் கூட்டுத்தொகைகளை இந்த சமதொடுகோட்டுத் துண்டுகளாகப் பிரித்து அக்கூட்டுத்தொகைகள் சமமாக இருப்பதை படத்தில் உள்ளவாறு நிறுவலாம் (படம் 2).
மறுதலைக் கூற்றும் உண்மை. எதெரெதிர் சோடிப் பக்க நீளங்களின் கூட்டுத்தொகைகள் சமமாகவுள்ள நாற்கரத்தின் உட்புறமாக அதன் பக்கங்களைத் தொட்டவாறு ஒரு வட்டம் வரையலாம்.[1]
1725 இல் பீட்டோ இத்தேற்றத்தை நிறுவினார். இதன் மறுதலை கணதவியலாளர் ஜேக்கப் இசுட்டெயினரால் 1846 இல் நிறுவப்பட்டது.[1]
2n-பல்கோணங்களுக்கும் பீட்டோ தேற்றத்தைப் பொதுமைப்படுத்தலாம். இதில் 2n-பல்கோணத்தின் ஒன்றுவிட்ட பக்கங்களின் நீளங்களின் கூட்டுத்தொகைகள் சமமாக இருக்கும்.[3]
மேற்கோள்கள்
[தொகு]- ↑ 1.0 1.1 1.2 Josefsson, Martin (2011), "More characterizations of tangential quadrilaterals" (PDF), Forum Geometricorum, 11: 65–82, MR 2877281. See in particular pp. 65–66.
- ↑ Boris:Pritsker: Geometrical Kaleidoscope. Dover, 2017, பன்னாட்டுத் தரப்புத்தக எண் 9780486812410, p. 51
- ↑ 1de Villiers, Michael (1993), "A unifying generalization of Turnbull's theorem", International Journal of Mathematical Education in Science and Technology, 24 (2): 65–82, எண்ணிம ஆவணச் சுட்டி:10.1080/0020739930240204, MR 2877281
{{citation}}
: CS1 maint: numeric names: authors list (link).
வெளியிணைப்புகள்
[தொகு]- Alexander Bogomolny, "When A Quadrilateral Is Inscriptible?" at Cut-the-knot
- "A generalization of Pitot's theorem"