மீதி (கணிதம்)
கணிதத்தில் மீதி அல்லது மீதம் (remainder) என்பது ஏதேனுமொரு கணிக்கிடுதலுக்குப் பின்னர் ’விடுபட்டுள்ள தொகை’யாகும். எண்கணிதத்தில், ஒரு முழு எண்ணை மற்றொரு முழுஎண்ணால் வகுத்து, ஒரு முழுஎண் ஈவு கிடைத்தபின் விடுபட்டப் பகுதி மீதி எனப்படும். இயற்கணிதத்தில் மீதி என்பது, ஒரு பல்லுறுப்புக்கோவையை மற்றொரு பல்லுறுப்புக்கோவையால் வகுத்தபின் விடுபட்டுள்ள பல்லுறுப்புக்கோவை. வகுபடு எண்ணும் வகுஎண்ணும் தரப்பட்டுள்ளபோது, ’மீதி’யைத் தருகின்ற செயலி சமானம், மாடுலோ n ஆகும். சார்பை, ஒரு தொடர் விரிவாகத் தோராயமாக எழுதும்போது விடுபட்டுப் போகும் பகுதியானது (பிழை) ”மீதமுள்ள உறுப்பு” எனப்படும்.
இரு எண்களைக் கழிக்கக் கிடைக்கும் எண்ணானது அவ்விரு எண்களுக்கு இடையேயான ’வித்தியாசம்’ ஆகும். எனினும், அது பொதுவாக மீதி அல்லது மிச்சம் என்றே அழைக்கப்படுகிறது. இந்தப் பயன்பாட்டைத் தொடக்கப்பள்ளிப் பாடப்புத்தகங்களில் காணலாம். எடுத்துக்காட்டாக ஒரு சிறு கழித்தல் கணக்கின் கேள்வி: ”உன்னிடம் 100 உள்ளது. 70 ரூபாய்க்குப் புத்தகங்கள் வாங்கிவிட்டாய். இப்பொழுது உன்னிடம் எவ்வளவு பணம் ’மீதம்’ இருக்கும்?[1]
முழுஎண் வகுத்தல்
[தொகு]a , d இரு முழுஎண்கள்; d ≠ 0 எனில்:
- a = qd + r and 0 ≤ r < |d|
என்றமையுமாறு q , r என்ற இரு தனித்த முழுஎண்களைக் காணமுடியும். இதில q, ஈவு என்றும் r மீதி என்றும் அழைக்கப்படும் (யூக்ளிடிய வகுத்தல்).
இவ்வாறு வரையறுக்கப்பட்ட மீதியானது, மிகச்சிறிய நேர்ம மீதி அல்லது சுருக்கமாக, மீதி என அழைக்கப்படும்.[2] முழுஎண் a , d இன் மடங்காகவோ அல்லது d இன் இரு தொடர் மடங்குகளுக்கு இடைப்பட்டதாகவோ (q⋅d அல்லது (q + 1)d , q ஒரு நேர்ம எண்).
சில சமயங்களில் d முழுஎண் மடங்கொன்றுக்கு முடிந்தளவுக்கு மிகஅருகிலானதாக a இருக்குமாறு வகுத்தலைச் செய்வது வசதியாக இருக்கும். அதாவது பின்வருமாறு எழுதலாம்:
- a = k⋅d + s, |s| ≤ |d/2| , k ஒரு முழுஎண்.
இம்முறையில் s என்பது மிகச்சிறிய தனி மீதி எனப்படும்.[3] d = 2n , s = ± n என்ற நிலையைத் தவிர்த்து, இதில் k , s இரண்டும் தனித்த மதிப்புகள் கொண்டிருக்கும்.
d = 2n , s = ± n எனில் a , கீழ்வருமாறு அமையும்:
- a = k⋅d + n = (k + 1)d - n.
இதில், எப்பொழுதும் s இன் நேர்ம மதிப்பை எடுத்துக்கொள்வதன் மூலம் மீதியின் மதிப்பு தனித்ததாக அமையுமாறு பார்த்துக் கொள்ளலாம்..
எடுத்துக்காட்டுகள்
[தொகு]43 ஐ 5 ஆல் வகுக்கும்போது:
- 43 = 8 × 5 + 3, இதில் 3, ”மிகச்சிறிய நேர்ம மீதி”
- 43 = 9 × 5 - 2 எனவும் எழுத முடியும். இதில் −2 ”மிகச்சிறியத் தனி மீதி”.
d எதிர்ம எண்ணாக இருந்தாலும் இந்த வரையறைகள் பொருந்தும்.
43 ஐ −5 ஆல் வகுக்கும்போது,
- 43 = (−8)×(−5) + 3, இதில் 3, ”மிகச்சிறிய நேர்ம மீதி”
இதே 43ஐ கீழுள்ளவாறும் எழுதலாம்:
- 43 = (−9)×(−5) + (−2) இதில் −2, ”மிகச்சிறிய தனி மீதி”
42 ஐ 5 ஆல் வகுக்கும்போது:
- 42 = 8 × 5 + 2, இதில் 2 < 5/2 என்பதால், 2 ஆனது ”மிகச்சிறிய நேர்ம மீதி”யாகவும் , ”மிகச்சிறிய தனி மீதி”யாகவும் இருக்கும்.
மேலுள்ள எடுத்துக்காட்டுகளில், ”மிகச்சிறிய நேர்ம மீதி”யிலிருந்து வகுஎண்ணைக் கழித்தால் ”மிகச்சிறிய தனி மீதி” கிடைப்பதைக் காணலாம். ”மிகச்சிறிய நேர்ம மீதி”, ”மிகச்சிறிய தனி மீதி” இரண்டும் சமமாக அமையும் அல்லது எதிர்க்குறி கொண்டவையாக இருக்கும் ”மிகச்சிறிய நேர்ம மீதி” r1 -”மிகச்சிறிய நேர்ம மீதி”; எதிர்க்குறி கொண்ட மீதி r2 எனில்,
- r1 = r2 + d.
பல்லுறுப்புக்கோவை வகுத்தல்
[தொகு]முழுஎண்களின் யூக்ளிடிய வகுத்தல் போன்றே பல்லுறுப்புக்கோவைகளின் யூக்ளிடிய வகுத்தல் வரையறுக்கப்படுகிறது.
- ஒரு களத்தில் (பெரும்பாலும் மெய்யெண்கள் அல்லது சிக்கலெண்கள்) a(x) , b(x) (b(x) பூச்சிய பல்லுறுப்புக்கோவையாக இருக்கக் கூடாது) இரண்டும் ஒருமாறியிலமைந்த பல்லுறுப்புக்கோவைகள் எனில் q(x) (ஈவு) ,r(x) (மீதி) என இரு பல்லுறுப்புக்கோவைகள்,
- என்ற முடிவை நிறைவு செய்யும்[4]
இங்கு "deg(...)" என்பது பல்லுறுப்புக்கோவையின் படியைக் குறிக்கிறது. (படிகளுக்கான நிபந்தனை எப்போதும் செல்லுபடியாவதற்காக, 0 ஆகவுள்ள மாறிலி பல்லுறுப்புக்கோவையின் படி எதிர்மமாக வரையறுத்துக் கொள்ளப்படுகிறது). இத்தொடர்புகளால் q(x) , r(x) இரண்டும் தனித்தவைகளாகின்றன. பல்லுறுப்புக்கோவை வகுத்தலில் படிகளுக்குத் தரப்படும் நிபந்தனைக்குப் பதிலாக முழுஎண் வகுத்தலில் நிபந்தனை மீதியின் மீது வைக்கப்படுகிறது.
பல்லுறுப்புக்கோவை வகுத்தலின் விளைவாக கிடைப்பது பல்லுறுப்புக் கோவை மீதியத் தேற்றம் ஆகும்:
f(x) என்ற பல்லுறுப்புக்கோவையை x - k ஆல் வகுக்கும்போது கிடைக்கும் மீதி r = f(k) எனும் மாறிலியாகும்.[5]
குறிப்புகள்
[தொகு]- ↑ Smith 1958, p. 97
- ↑ Ore 1988, p. 30. நேர்ம மீதி என்றழைக்கப்பட்டாலும், மீதி பூச்சியமாக இருக்கும்போது அது நேர்ம எண் அல்ல.
- ↑ Ore 1988, p. 32
- ↑ Larson & Hostetler 2007, p. 154
- ↑ Larson & Hostetler 2007, p. 157
மேற்கோள்கள்
[தொகு]- Larson, Ron; Hostetler, Robert (2007), Precalculus:A Concise Course, Houghton Mifflin, ISBN 978-0-618-62719-6
- Ore, Oystein (1988) [1948], Number Theory and Its History, Dover, ISBN 978-0-486-65620-5
- Rotman, Joseph J. (2006), A First Course in Abstract Algebra with Applications (3rd ed.), Prentice-Hall, ISBN 978-0-13-186267-8
- Smith, David Eugene (1958) [1925], History of Mathematics, Volume 2, New York: Dover, ISBN 0486204308
மேலும் வாசிக்க
[தொகு]- Davenport, Harold (1999). The higher arithmetic: an introduction to the theory of numbers. Cambridge, UK: Cambridge University Press. p. 25. ISBN 0-521-63446-6.
- Katz, Victor, ed. (2007). The mathematics of Egypt, Mesopotamia, China, India, and Islam : a sourcebook. Princeton: Princeton University Press. ISBN 9780691114859.
- Schwartzman, Steven (1994). "remainder (noun)". The words of mathematics : an etymological dictionary of mathematical terms used in english. Washington: Mathematical Association of America. பன்னாட்டுத் தரப்புத்தக எண் 9780883855119.
- Zuckerman, Martin M (1985). Arithmetic: A Straightforward Approach. Lanham, Md: Rowman & Littlefield Publishers, Inc. ISBN 0-912675-07-1.