கெப்லரின் கோள் இயக்க விதிகள்

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
(கெப்லரின் விதிகள் இலிருந்து வழிமாற்றப்பட்டது)
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்
கோள்களின் இயக்க விதிகளுக்காகப் பெரிதும் அறியப்படும் ஜொஹான்னெஸ் கெப்லர்

வானியலுக்கு, யொகானசு கெப்லரின் முதன்மையான பங்களிப்பு கெப்லரின் கோள் இயக்க விதிகள் எனப்படும் மூன்று விதிகளாகும். கண்பார்வைக் குறைவுள்ளவராக இருந்தும், மிகவும் திறமையுள்ளவராக விளங்கிய ஜெர்மானியக் கணிதவியலாளரான கெப்லரின் விதிகளின் உருவாக்கத்துக்கு டென்மார்க்கைச் சேர்ந்த வானியலாளரான டைக்கோ பிரா (Tycho Brahe) என்பவரது துல்லிய வானியல் குறிப்புகள் (அவதானிப்புகள்) மிகவும் துணை புரிந்தன.

சர். ஐசாக் நியூட்டன் அவர்களுடைய பின்னாளைய கண்டுபிடிப்புகளான, நியூட்டனின் இயக்கவிதி மற்றும் புவியீர்ப்பு தொடர்பான விதிகள் என்பவற்றின் உருவாக்கத்துக்குக் கெப்லரின் கண்டுபிடிப்பு அடிக்களமாக (ஆதாரமாக) அமைந்தது எனலாம். தற்கால நோக்கில், கெப்லரின் விதிகள், நியூட்டனின் விதிகளின் விளைவுகளாக இருந்தாலும், வரலாற்றின்படி, கெப்லரின் விதிகளே முதலில் வெளியானவை.

கெப்லரின் முதலாவது விதி[தொகு]

கெப்லரின் முதலாவது விதி

ஒரு கோளின் சுற்றுப்பாதை, கதிரவன் ஒரு குவியத்தில் அமைந்திருக்கும் ஒரு நீள்வட்டமாகும், என்பதே கெப்லரின் முதலாவது விதியாகும்.

கெப்லரின் இரண்டாவது விதி[தொகு]

கெப்லரின் இரண்டாவது விதி

கெப்லரின் இரண்டாவது விதி, கோளையும், கதிரவனையும் இணைக்கும் நேர்கோடு, கோளின் சமகால இடைவெளி நகர்வில் சம பரப்பைத் தடவிச்செல்லும். என்கிறது

கெப்லரின் மூன்றாவது விதி[தொகு]

கோள்களின் ஒரு முழுசுற்றுக்கால அளவின் இருபடி, அவற்றின் நீள்வட்டச் சுற்றுப்பாதையின் பெரிய அச்சின் பாதியின் (semi-major axis) முப்படிக்கு நேர் சார்புடையது (நேர் விகித சமனாகும்). மேலும் நேர்சார்புக் கெழு (மாறிலி) எல்லாக் கோளுக்கும் ஒரே மதிப்பு கொண்டதாகும். என்பது கெப்லரின் மூன்றாவது விதியாகும்.

ஒரு கோளின் முழுச்சுற்றுகாலம் T என்றும், நீள்வட்டச் சுற்றுப்பாதையின் பெரிய அச்சின் பாதியை r என்றும், கொண்டால் இம் மூன்றாம் விதியைக் கீழ்க்காணும் ஈடுகோளால் காட்டலாம்:


 T^2 = \frac{4 \pi^2}{GM} r^3.

மேலுள்ளவற்றில் M என்பது கதிரவனின் நிறை, G என்பது நியூட்டனின் பொருளீர்ப்பு நிலையெண் (மாறிலி).

மேலுள்ள ஈடுகோளைக் கீழ்க்காணுமாறு சுருக்கி எழுதலாம்:

 T^2 = a r^3. \,

இதில் a என்பது {T^2} \propto  {r^3} என்னும் நேர்சார்புத் தொடர்பை ஈடுகோளாக்கும் கெழு (மாறிலி), அல்லது நேர்சார்புக் கெழு.

இரு வேறு கோள்களின் சுற்றுக்கால அளவுகள் T1, T2 என்றும், அவற்றின் சுற்றுப்பாதையின் பெரிய அச்சின் பாதியின் அளவுகள் r1, r2 ஆக முறையே இருந்தால், சுற்றுக்காலங்களின் விகிதமும், பெரிய அச்சின் பாதிகளின் விகிதமும் கீழ்க்காணுமாறு அமையும்.

\left( \frac{T_1}{T_2} \right)^2 = \left( \frac{r_1}{r_2} \right)^3