மாறிலி (கணிதம்)
கணிதத்தில் மாறிலி (constant) என்பது, எடுத்துக்கொள்ளப்பட்ட சூழல் முழுவதும், தன் மதிப்பில் எந்தவொரு மாற்றமும் கொள்ளாத ஒரு கணியமாகும். இது கணிதக் கணியம் மாறிக்கு எதிர் நிலையில் உள்ளது. பொதுவாக மாறிலிகளைக் குறிப்பதற்கு ஆங்கில அகரவரிசையின் தொடக்க எழுத்துக்களான a, b, c .., ஆகியவையும், மாறிகளைக் குறிப்பதற்கு இறுதி எழுத்துக்களான x, y, z ஆகியவையும் பயன்படுத்தப்படுகின்றன. எடுத்துக்காட்டாக,
இருபடிக்கோவையின் பொதுவடிவம்:
இவ்வடிவில், a, b மற்றும் c மாறிகளாகவும் x மாறியும் ஆக உள்ளன. இதனை இருபடிச் சார்பு இன் சார்பலனாக எடுத்துக் கொண்டால் x இன் மாறி நிலையையும், a, b , c -இவற்றின் மாறிலி நிலையையும் தெளிவாக அறிந்துகொள்ள முடியும். இருபடிக்கோவையில் a, b , c ஆகிய மூன்றும் கெழுக்கள் அல்லது குணகங்கள் என அழைக்கப்படுகிறன. இதில் மாறி x ஆனது, உடன் இல்லாமையால் c மாறிலி உறுப்பு என அழைக்கப்படுகிறது. c ஐ x0 உறுப்பின் கெழுவாகவும் கொள்ளலாம். எனவே எந்தவொரு பல்லுறுப்புக்கோவையிலும், மாறியின் அடுக்கு பூச்சியமாக உள்ள உறுப்பு மாறிலியாகும்.[1]:18
மாறிலிச் சார்பு
[தொகு]மாறிலிச் சார்பின் வரையறையில் மாறிலி பயன்படுகிறது. மாறிலிச் சார்பின் வீச்சு ஓருறுப்புக் கணமாகும். அதாவது அனைத்து உள்ளீடுகளின் சார்பலன்களும் சமமாக ஒரே வெளியீட்டைக் கொண்டிருக்கும். எடுத்துக்காட்டாக,
- இச்சார்பின் ஆட்களத்தின் எல்லா உறுப்புகளின் சார்பலனும் ஒரே எண் 5 ஆக இருக்கும்.
சூழல் சார்ந்த மாறிலி
[தொகு]சில சமயங்களில் மாறிலியின் மாறாமல் இருக்கும் நிலை அது அமையும் சூழலைப் பொறுத்து அமையும்.
எடுத்துக்காட்டு:
- இங்கு x மாறிலி என்பதால் (அதாவது x இன் மதிப்பு h ஐச் சார்ந்து இல்லை) எல்லையை விட்டு வெளிக்கொணரப்படுகிறது.
- (இங்குள்ள எல்லையின் மதிப்பு x ஐப் பொறுத்து இல்லை என்பதால் அம்மதிப்பு மாறிலியாகக் கருதப்படுகிறது)
கணித மாறிலிகள்
[தொகு]கணிதத்தில் சில மாறிலி எண்கள் சிறப்பான பண்புகளுடன் உள்ளன. அவை கணித மாறிலிகள் என அழைக்கப்படுகின்றன.
எடுத்துக்காட்டுகள்:
- 0 (பூச்சியம்).
- 1 (ஒன்று), முதல் இயல் எண்.
- π (பை), ஒரு வட்டத்தின் சுற்றளவுக்கும் அதன் விட்டத்துக்குமுள்ள விகிதம், மேலும் அதன் மதிப்பு தோராயமாக 3.141592653589793238462643...ஆகும்[2].
- e, தோராயமாக இதன் மதிப்பு: 2.718281828459045235360287...
- i, i2 = -1.
- இதன் தோராய மதிப்பு: 1.414213562373095048801688.
- φ (பொன் விகிதம்), இதன் மதிப்பு: அல்லது தோராயமாக 1.618033988749894848204586
நுண்கணிதத்தில்
[தொகு]- ஒரு சார்பு அல்லது கணியத்தின் மாறுவீதத்தின் எல்லை மதிப்பாக அதன் வகைக்கெழு வரையறுக்கப்படுகிறது. எனவே, மாறாத்தன்மை கொண்ட மாறிலியின் வகைக்கெழு பூச்சியம் ஆகும்.
எடுத்துக்காட்டு:
- மாறாகத் தொகையீட்டில், ஒரு மாறிலியின் தொகையீடு காணும்போது அம்மாறிலியானது எம்மாறியைப் பொறுத்துத் தொகையீடு காணப்படுகிறதோ அம் மாறியால் பெருக்கப்படுகிறது.
எடுத்துக்காட்டு:
- எல்லை காணல்
மேற்கோள்கள்
[தொகு]- ↑ Foerster, Paul A. (2006). Algebra and Trigonometry: Functions and Applications, Teacher's Edition (Classics ed.). Upper Saddle River, NJ: Prentice Hall. பன்னாட்டுத் தரப்புத்தக எண் 0-13-165711-9.
- ↑ Arndt, Jörg; Haenel, Christoph (2001). Pi - Unleashed. Springer. p. 240. பன்னாட்டுத் தரப்புத்தக எண் 978-3540665724.