சமச்சீர் அணி

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்

நேரியல் இயற்கணிதத்தில் ஒரு சதுர அணியும் அதன் இடமாற்று அணியும் சமமாக இருக்குமானால் அச்சதுர அணியானது சமச்சீர் அணி (symmetric matrix) எனப்படும்.

சதுர அணி A ஒரு சமச்சீர் அணி எனில்:

ஒரே வரிசையுள்ள இரு அணிகளே சமமாக இருக்கமுடியும் என்பதால் சதுர அணிகள் மட்டுமே சமச்சீர் அணிகளாக இருக்க முடியும்.

சமச்சீர் அணியின் உறுப்புகள் அதன் மூலைவிட்டத்தைப் பொறுத்து சமச்சீராக இருக்கும்.

A = (aij), எனில் அனைத்து i , j மதிப்புகளுக்கும், aij = aji

எடுத்துக்காட்டு: கீழுள்ள 3×3 அணி ஒரு சமச்சீர் அணியாகும்.

சதுர மூலைவிட்ட அணிகளில் அவற்றின் முதன்மை மூலைவிட்ட உறுப்புகள் தவிர்த்த பிற உறுப்புகள் பூச்சியமென்பதால், ஒவ்வொரு சதுர மூலைவிட்ட அணியும் ஒரு சமச்சீர் அணியாகும்.

நேரியல் இயற்கணிதத்தில் மெய்யெண் உறுப்புகளைக் கொண்ட சமச்சீர் அணியானது, உட்பெருக்க வெளியின் மீதான தன்-சேர்ப்புச் செயலியாக (self-adjoint operator) இருக்கும்.[1]

பண்புகள்[தொகு]

  • இரு சமச்சீர் அணிகளைக் கூட்டினால் கிடைக்கும் அணியும் சமச்சீர் அணியாக இருக்கும். *இரு சமச்சீர் அணிகளைக் கழிக்கக் கிடைக்கும் அணியும் சமச்சீர் அணியாக இருக்கும்.
  • பொதுவாக இரு சமச்சீர் அணிகளைப் பெருக்கினால் கிடைக்கும் அணி சமச்சீர் அணியாக இருக்காது. ஆனால் அவ்விரு அணிகளும் அணிப்பெருக்கலைப் பொறுத்து பரிமாற்றுத்தன்மை (AB = BA) கொண்டிருந்தால், இருந்தால் மட்டுமே அவற்றின் பெருக்கல் அணியும் சமச்சீர் அணியாக இருக்கும்.
  • A−1 இருக்குமானால், A சமச்சீராக இருந்தால், இருந்தால் மட்டுமே A−1 உம் சமச்சீராக இருக்கும்.
  • ஒவ்வொரு சமச்சீர் அணியும் இயல்நிலை அணியாகவும் இருக்கும்.

குறிப்புகள்[தொகு]

  1. Jesús Rojo García (1986). Álgebra lineal (in Spanish) (2nd. ed.). Editorial AC. ISBN 84 7288 120 2. 

மேற்கோள்கள்[தொகு]

  • Horn, Roger A.; Johnson, Charles R. (2013), Matrix analysis (2nd ed.), Cambridge University Press, ISBN 978-0-521-54823-6 

வெளியிணைப்புகள்[தொகு]

"https://ta.wikipedia.org/w/index.php?title=சமச்சீர்_அணி&oldid=2131512" இருந்து மீள்விக்கப்பட்டது