கோண இருசமவெட்டித் தேற்றம்

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்
இப்படத்தில், BD:DC = AB:AC.

வடிவவியலில், கோண இருசமவெட்டித் தேற்றமானது(Angle bisector theorem) முக்கோணத்தின் ஒரு கோணத்தின் இரு சமவெட்டியானது அக்கோணத்திற்கு எதிரேயுள்ள பக்கத்தினை வெட்டுவதால் கிடைக்கும் கோட்டுத் துண்டுகளின் நீளங்களின் விகிதங்களைப்பற்றிக் கூறும் தேற்றமாகும். இத்தேற்றத்தின்படி அக்கோட்டுத் துண்டுகளின் நீளங்களின் விகிதம் முக்கோணத்தின் மற்ற இரு பக்கங்களின் நீளங்களின் விகிதத்திற்கு சமமாக இருக்கும்.

தேற்றம்[தொகு]

ஒரு முக்கோணத்தில் ஒரு கோணத்தின் இருசமவெட்டியானது, அக்கோணத்திற்கு எதிரேயுள்ள பக்கத்தினை மற்ற இரு பக்கங்களின் நீளங்களின் விகிதத்தில் பிரிக்கும்.

அதாவது முக்கோணம் -ஐ எடுத்துக் கொள்க.

  • -ன் இருசமவெட்டி, பக்கத்தை புள்ளியில் வெட்டட்டும்.
  • கோண இருசமவெட்டித் தேற்றத்தின்படி, கோட்டுத் துண்டுகள் மற்றும் -ன் விகிதமானது, மற்றும் பக்கங்களின் நீளங்களின் விகிதத்திற்குச் சமமாக இருக்கும்:
  • பொதுமைப்படுத்தப்பட்ட கோண இருசமவெட்டித் தேற்றத்தின்படி, புள்ளியானது பக்கம் -ன் மீது அமைந்தால்(அ-து, AD கோண இருசமவெட்டியாக இருக்க வேண்டியதில்லை) :
  • இதிலிருந்து, கோணம் -ன் இருசமவெட்டியாக, இருக்கும்போது முதலிலுள்ள தேற்றத்தைப் பெறலாம்.

நிறுவல்[தொகு]

Triangle ABC with bisector AD.svg
  • மேலேயுள்ள படத்தில், மற்றும் முக்கோணங்களுக்கு சைன் விதியைப் பயன்படுத்த:
..... (சமன்பாடு 1)
..... (சமன்பாடு 2)
  • கோணங்கள் மற்றும் இரண்டும் சமமானவை.
  • எனவே சமன்பாடுகள் (1), (2) -ன் வலதுகைப் பக்கங்கள் சமம். ஆகவே அவற்றின் இடதுகைப் பக்கங்களும் சமமாக இருக்க வேண்டும்:

எனவே, கோண இருசமவெட்டித் தேற்றம் நிறுவப்பட்டது.

கோட்டுத்துண்டு கோண இருசமவெட்டி இல்லையென்றால்

  • கோணங்கள் மற்றும் இரண்டும் சமமில்லை.
  • சமன்பாடுகள் (1), (2) இரண்டையும் பின்வருமாறு மாற்றி எழுதலாம்:

கோணங்கள் மற்றும் இரண்டும் இப்பொழுதும் மிகைநிரப்பு கோணங்கள். எனவே இரு சமன்பாடுகளின் வலதுபுறங்களும் சமம். ஆகவே இடதுபுறங்களும் சமமாக அமையும்:

இது பொதுமைப்படுத்தப்பட்ட தேற்றத்தை நிறுவுகிறது.

நிறுவல்-மாற்றுமுறை[தொகு]

Bisekt.svg
  • -க்கு, உச்சி வழியே வரையப்பட்ட குத்துக்கோட்டின் அடி B1 என்க. -க்கு, உச்சி வழியே வரையப்பட்ட குத்துக்கோட்டின் அடி C1 என்க.
  • புள்ளியானது கோட்டுத்துண்டு -ன் மேல் இருந்தால், கோணங்கள் B1DB மற்றும்

C1DC இரண்டும் சர்வசமமாகவும்

  • புள்ளியானது கோட்டுத்துண்டு -ன் மேல் இல்லையெனில் அவ்விரு கோணங்களும் முற்றுமொத்தவையாகவும் அமையும்.

எனவே பொதுமைப்படுத்தப்பட்ட கோண இருசமவெட்டித் தேற்றம் நிறுவப்படுகிறது.

வெளி இணைப்புகள்[தொகு]