கருந்துளை

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்
பால் வீதியில் கருங்குழியின் உருப்போலியான தோற்றம். இக்குழி பத்து சூரிய தினிவுகளை கொண்டது. 600 கிலோ மீட்டர் தொலைவில் இருந்து நோக்கப்பட்டது.[1]

கருங்குழிகள் (Black Hole) அல்லது கருந்துளை என்பன, இவற்றின் எல்லைக்குட் செல்லும், ஒளி உட்பட்ட எதுவுமே வெளியேற முடியாத அளவு வலுவான ஈர்ப்புச் சத்தியைக் கொண்டுள்ள, அண்டவெளியின் ஒரு பகுதியாகும். மேற் குறிப்பிட்ட எல்லை நிகழ்வெல்லை (event horizon) எனப்படும். இந்த நிகழ்வெல்லைக்குள் இருந்து பார்க்கக்கூடிய ஒளி அலைகள் போன்ற மின்காந்த அலைகள் கூடத் தப்பி வெளியேற முடியாது என்பதால் உள்ளே நடப்பவை எவற்றையுமே வெளியில் இருந்து அறிந்து கொள்ள முடியாது. இதனாலேயே இதனைக் கருங்குழி என்கின்றனர். கருங்குழிகள் பாரிய நட்சத்திரங்களின் பரிணாமத்தின் இறுதிக்கட்டமாகக் கருதப்படுகிறது. இதற்குக் கன அளவோ, மேற்பரப்போ கிடையாது. ஆனால் இதன் பிரம்மாண்டமான திணிவு (mass) காரணமாக இது முடிவிலியான அடர்த்தியைக் கொண்டுள்ளது.

பெரிய மகலனிக் விண்மீன் கூட்டத்துக்கு முன்னேயுள்ள கருங்குழியின் தோற்றம். ஈர்ப்பு வில்லை விளைவு காரணமாக மகலனிக் கூட்டத்தின் வடிவம் உருப்பெருத்து இரண்டாகத் தெரிகின்றது. மேலே குறுக்காக இந்த விளைவு காரணமாக பால்வெளி மண்டலம் வளைந்து தோற்றமளிக்கின்றது.

இதனைப் பார்க்க முடியாது எனினும், இதன் நிகழ்வெல்லைக்கு அப்பால் இருக்கும் பொருட்கள் மீது அவை கொண்டுள்ள தாக்கங்கள் மூலம் அவற்றின் இருப்புப் பற்றி அறிந்துகொள்ள முடியும். எடுத்துக் காட்டாக, ஒரு தொகுதி விண்மீன்கள் கருங்குழியொன்றின் ஈர்ப்புக்கு உட்பட்டு அதன் மையத்தைச் சுற்றி வருவது உண்டு. இவ்வாறான விண்மீன்களின் இயக்கத்தை அவதானிப்பதன் மூலம் கருங்குழியின் இருப்பையும் அதன் அமைவிடத்தையும் தெரிந்து கொள்ளலாம். சில வேளைகளில் கருங்குழிகள் அண்ட வெளியில் இருந்து அல்லது அண்மையில் இருக்கும் விண்மீன்களில் இருந்து வளிமங்களைக் கவர்ந்து இழுக்கின்றன. இவ் வளிமங்கள் கருங்குழிகளை வேகமாகச் சுற்றியபடி உட்செல்லும்போது வெப்பநிலை அதிகரிப்பதனால் பெருமளவு கதிர்வீச்சு வெளிப்படுகின்றது. இவற்றை புவியில் உள்ள அல்லது விண்வெளித் தொலைநோக்கிகள் மூலம் உணர முடியும். இவ்வாறான அவதானிப்புகளின் மூலம் கருங்குழிகள் உள்ளன என்னும் பொதுக் கருத்து அறிவியலாளரிடையே ஏற்பட்டுள்ளது.

ஒளியைக் கூடத் தப்பவிடாத அளவுக்கு வலுவான ஈர்ப்புச் சக்தி கொண்ட பொருள் பற்றிய எண்ணக்கருவொன்றை 1783 ஆம் ஆண்டில் தொழில்சாராப் பிரித்தானிய வானியலாளரான வண. ஜான் மிச்சேல் (John Michell) என்பவர் முன்வைத்தார். 1795 இல் பிரெஞ்சு இயற்பியலாளர் பியரே-சைமன் லாப்பிளாஸ் (Pierre-Simon Laplace) என்பவரும் இது போன்ற முடிவொன்றை வெளியிட்டார். இன்று புரிந்து கொள்ளப்பட்டவாறான கருங்குழி பற்றிய விளக்கம் 1916 ஆம் ஆண்டில் ஐன்ஸ்டீன் முன்மொழிந்த பொதுச் சார்புக் கோட்பாட்டில் இருந்தே பெறப்பட்டது. போதிய அளவு பெரிதான ஒரு திணிவு போதிய அளவு சிறிதான வெளிப் பகுதி ஒன்றில் இருக்கும்போது சூழவுள்ள வெளி உட்புறமாக மையத்தை நோக்கி வளைந்து அதனுள் இருக்கும் எந்தப் பொருளும் கதிர்வீச்சும் தப்பி வெளியேறாதபடி தடுத்துவிடும்.

பொதுச் சார்புத் தத்துவம் கருங்குழியை, மையத்தில் புள்ளி போன்ற சிறப்பொருமையுடன் (singularity) கூடிய வெறுமையான வெளியாகவும், அதன் விளிம்பில் உள்ள நிகழ்வெல்லையாகவும் விபரிக்கும் அதே வேளை, குவாண்டம் பொறிமுறையின் தாக்கங்களைக் கருதும்போது இதன் விளக்கம் மாறுகின்றது. கருங்குழிக்குள் அகப்பட்ட பொருட்களை முடிவின்றி உள்ளே வைத்திராமல், கருங்குழிகள் இவற்றை ஒருவித வெப்பச் சக்தி வடிவில் கசியவிடக்கூடும் என இத் துறையிலான ஆய்வுகள் காட்டுகின்றன. இது ஹோக்கிங் கதிர்வீச்சு எனப்படுகின்றது.

கருங்குழியில் இருந்து தப்ப முடியாதது ஏன்?[தொகு]

BH_noescape1.png
கருங்குழியிலிருந்து தொலைவில் உள்ள ஒரு துகள் எத்திசையிலும் நகர முடியும். இது ஒளி வேகத்தால் மட்டுமே மட்டுப்படுத்தப்படுகின்றது.
BH_noescape2.png
கருங்குழிக்கு அருகில் வெளிநேரம் வளையத் தொடங்குகிறது. விலகிச் செல்வதைவிடக் கூடுதலான பாதைகள் கருங்குழியை நோக்கிச் செல்கின்றன.
BH_noescape3.png
நிகழ்வெல்லைக்கு உள்ளே எல்லாப் பாதைகளும் துகளை கருங்குழியின் மையத்துக்கு அருகில் கொண்டுவருகின்றன. துகள்கள் இங்கிருந்து தப்ப முடியாது.[2]

இது குறித்த பொதுவான விளக்கங்கள் விடுபடு திசைவேகம் என்னும் கருத்துருவின் அடிப்படையிலேயே கொடுக்கப்படுகின்றன. விடுபடு திசைவேகம் என்பது ஒரு பெரிய பொருளொன்றின் மேற்பரப்பில் இருந்து புறப்படும் ஒரு கலம் அப்பொருளின் ஈர்ப்புப் புலத்தை முழுமையாகக் கடப்பதற்குத் தேவையான வேகம் ஆகும். நியூட்டனின் ஈர்ப்பு விதியின்படி பொருளின் ஈர்ப்பு விசை அதிகரிக்கும்போது அதாவது பொருளின் அடர்த்தி அதிகரிக்கும்போது விடுபடு திசைவேகமும் அதிகரித்துச் செல்லும். இவ்விசை ஒரு குறிப்பிட்ட அளவை அடையும்போது விடுபடு திசைவேகம் ஒளியின் வேகத்துக்குச் சமமாகவோ அல்லது அதனிலும் கூடுதலாகவோ ஆகக்கூடும். ஒளியின் வேகத்துக்கு மிஞ்சிய வேகம் எதுவும் இல்லை என்பதைக் காட்டி, அத்தகைய அடர்த்தி கொண்ட பொருளிலிருந்து எப்பொருளும் தப்பமுடியாது என்னும் விளக்கம் கொடுக்கப்படுகின்றது. இந்த விளக்கத்தில் ஒரு தவறு உள்ளது. இது ஒளி ஏன் ஈர்க்கும் பொருளினால் பாதிக்கப்படுகிறது என்பதையோ அது ஏன் தப்பமுடியாது என்பதையோ விளக்கவில்லை.

இத் தோற்றப்பாட்டை விளக்குவதற்கு ஐன்ஸ்டீன் அறிமுகப்படுத்திய இரண்டு கருத்துருக்கள் தேவைப்படுகின்றன. முதலாவது, வெளியும் நேரமும் தனித்தனியான இரண்டு கருத்துருக்கள் அல்ல, அவை வெளிநேரம் என்னும் ஒரே தொடர்பத்தை உருவாக்கும் ஒன்றுக்கொன்று தொடர்பானவை ஆகும். இந்தத் தொடர்பம் சில சிறப்பு இயல்புகளைக் கொண்டுள்ளது. ஒரு பொருள் தான் விரும்பியபடி வெளிநேரத்தில் நகர முடியாது. அது எப்பொழுதும் நேரத்தில் முன்னோக்கியே நகர முடியும். அத்துடன், அப்பொருள் தனது நிலையை ஒளி வேகத்திலும் வேகமாக மாற்றிக் கொள்ளவும் முடியாது. இதுவே சிறப்புச் சார்புக் கோட்பாட்டின் முக்கியமான விளைவு.

இரண்டாவது கருத்துருவே பொதுச் சார்புக் கோட்பாட்டின் அடிப்படை: திணிவு, வெளிநேரத்தின் அமைப்பை உருமாற்றுகிறது. வெளிநேரத்தில் திணிவின் தாக்கத்தை, நேரத்தின் திசையை திணிவு நோக்கிச் சாய்த்தல் எனப் பொதுவாகக் கூறலாம். இதனால் பொருள்கள் திணிவை நோக்கி நகர்கின்றன. இது ஈர்ப்பாக உணரப்படுகிறது. திணிவுக்கும் பொருளுக்கும் இடையிலான தூரம் குறையும்போது நேரத்தின் திசையின் சாய்தலும் அதிகரிக்கும். திணிவுக்கு அருகில் ஒரு குறிப்பிட்ட புள்ளியில் இச் சாய்வு மிகவும் வலுவடைந்து, இயலக்கூடிய எல்லாப் பாதைகளுமே திணிவை நோக்கியே செல்லும். இப் புள்ளியைக் கடக்கும் எந்தப் பொருளும் அத்திணிவில் இருந்து விலகிச் செல்வது முடியாது. இப் புள்ளியே நிகழ்வெல்லை எனப்படும்.

குறிப்புகள்[தொகு]

  1. Kraus, Ute (2005-03-20). "Step by Step into a Black Hole".
  2. The diagrams here are effectively Finkelstein diagrams using an advanced time parameter. Compare to (Hawking & Ellis 1973, figure 23ii).

வெளி இணைப்புகள்[தொகு]


"http://ta.wikipedia.org/w/index.php?title=கருந்துளை&oldid=1543846" இருந்து மீள்விக்கப்பட்டது