இருமுனையம்

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்
பல்வேறு இருமுனையங்கள்
இருமுனையத்தின் மின்சுற்றுக் குறி
நேர் அழுத்த முறை. இருமுனையம் வழி மின்னோட்டம் எளிதாகப் பாய்கின்றது. எனவே மின் விளக்கு எரிகின்றது. இருமுனையத்தின் இரு புறமும் உள்ள மின் அழுத்த திசையை கூட்டல்-கழித்தல் குறி காட்டுகின்றது
எதிர் அழுத்த முறை. இருமுனையம் வழி மின்னோட்டம் மிக மிகக் குறைவாகவே பாயும். எனவே மின்விளக்கு எரியவில்லை.இருமுனையத்தின் இரு புறமும் உள்ள மின் அழுத்த திசையை கூட்டல்-கழித்தல் குறி காட்டுகின்றது

இருமுனையம் (Diode) அல்லது இருமுனையி (இலங்கை வழக்கு: இருவாயி) என்பது ஒரு மின்கூறாகும். இன்று இது பெரும்பாலும் குறைக்கடத்திப் பொருள்களால் ஆன ஒரு நுண்மின்னணுக் கருவி. இது ஒரு திசையில் மின்னழுத்தம் தந்தால் எளிதாக கடத்தி அதிக மின்னோட்டம் தருகின்றது. ஆனால் எதிர் திசையில் மின்னழுத்தம் தந்தால் மிகக்குறைவாகக் கடத்தி மிகக்குறைவான மின்னோட்டத்திற்கே வழி செய்கிறது. எனவே இக்கருவியை ஒருவழிக் கடத்தி எனச் சுருக்கமாகக் கூறலாம். இச் சிறப்புப் பண்பின் பயனாக மாறுமின்னோட்டத்தை ஒரே திசையில் பாயும் நேர்மின்னோட்டமாக நெறிப்படுத்தப் பயன்படுகின்றது. இருமுனையம் மிகப்பெரும்பாலான இலத்திரனியல் கருவிகளில் பயன்படுகின்றது. மின்னழுத்தச் சீர்படுத்தி, எண்ணக்கூறுக் கருவிகள், அலைத்திருத்திகள், குறிபலைப் பிரிப்பிகள், அலைப்பிகள் ஆகியவற்றின் இலத்திரனியல் சுற்றுக்களில் இருமுனையம் சிறப்பாகப் பயன்படுகின்றது.

PN சந்தி உருவாக்கம்[தொகு]

தூய மண்ணியம்(சிலிக்கான்) அல்லது சாம்பலியம்(ஜேர்மானியம்) குறைக்கடத்தியின் ஒற்றைப்படிகம் ஒன்றின் ஒருபுறம் ஏற்பான் மாசு அணுக்களாலும் மறுபுறம் கொடை மாசு அணுக்களாலும் மாசூட்டப்படுவதால் PN சந்தி உருவாக்கப்படுகிறது. P-பகுதி அதிகளவில் மின்துளைகளையும் , N-பகுதி அதிகளவில் எதிர்மின்னிகளையும் பெற்றுள்ளன.

இயக்கமில்லாப் பகுதி[தொகு]

சந்தி உருவாக்கப்பட்டவுடன் விரவல் நிகழ்வதால் , மின்துளைகளும் கட்டுறா எதிர்மின்னிகளும் சந்தியைக் கடக்கின்றன. இந்நிகழ்வின் போது N-பகுதியிலிருந்து P-பகுதிக்குச் சந்தியைக் கடந்து செல்லும் எதிர்மின்னிகள் சந்திக்கு அருகில் P-பகுதியில் உள்ள துளைகளுடன் ஒன்றிணைகின்றன. இதுபோன்று மின்துளைகள் சந்தி வழியே P-பகுதியிலிருந்து N-பகுதிக்குச் சென்று சந்திக்கு அருகில் N-பகுதியில் உள்ள எதிர்மின்னிகளுடன் ஒன்றிணைகின்றன. இதனால் சந்திக்கு இருபுறமும் இயக்க மின்னூட்டங்களற்ற பகுதி உருவாக்கப்படுகிறது. இப்பகுதி இயக்கமில்லாப் பகுதி (depletion region) என்று அழைக்கப்படுகிறது. ஆகவே சந்திக்கு இடதுபுறம் உள்ள ஏற்பான் அணுக்கள் எதிர் அயனிகளாகவும் வலது புறம் உள்ள கொடை அணுக்கள் நேர் அயனிகளாகவும் மாறுகின்றன.

மின்னழுத்த அரண்[தொகு]

இயக்கமில்லாப் பகுதியில், கொடை மற்றும் ஏற்பான் அயனிகளுக்கிடையே ஒரு மின்புலம் உருவாக்கப்படுகிறது. N-பகுதியின் மின்னழுத்தம் P-பகுதியின் மின்னழுத்தத்தை விட அதிகம். எனவே எதிர்மின்னிகள் N-பகுதியிலிருந்து குறைந்த மின்னழுத்தம் உள்ள P-பகுதிக்குச் செல்வது தடுக்கப்படுகிறது. இதே போல், P-பகுதியில் மின்துளைகள் குறைந்த மின்னழுத்தத்தில் அமைவதால் N-பகுதிக்குச் செல்வது தடுக்கப்படுகிறது. ஆகவே பெரும்பான்மை மின்னூட்டஙளின் இயக்கத்தை எதிர்க்கும் ஒரு தடை , சந்தியில் உருவாகிறது. தடையின் ஒரு பக்கத்திற்கும் மற்றொரு பக்கத்திற்கும் இடையிலான மின்னழுத்த வேறுபாடே 'மின்னழுத்த அரண்' (potential barrier) ஆகும். மண்ணியத்தினாலான PN-சந்திக்கு ஏறத்தாழ 0.7V ஆகவும் , சாம்பலியத்தினாலான PN-சந்திக்கு ஏறத்தாழ 0.3V ஆகவும் மின்னழுத்த அரண் அமைகிறது. தடையின் ஒரு பகுதியிலிருந்து மற்றொரு பகுதிக்கு உள்ள தொலைவு மின்னழுத்த அரணின் அகலம் என்றழைக்கப்படுகிறது.

இயக்க நிலைகளும் முனைய இயல்புகளும்[தொகு]

இருமுனையத்தின் (Diode) இயக்க இயல்புகளை மின்னோட்ட-மின்னழுத்த இயல்புப் படம் எடுத்துரைக்கின்றது. எந்த திசையில் மின்னழுத்தம் தருகிறோம் என்பதைப் பொறுத்து இரண்டு இயக்க நிலைகளைக் கொண்டது. இது தவிர அத்துமீறிய ஒரு முறிவியக்க நிலையும் உண்டு. அவையானவை:

  1. நேர் அழுத்த முறை இயக்கநிலை
  2. எதிர் அழுத்த முறை இயக்கநிலை
  3. அத்துமீறிய எதிர் அழுத்த முறிவியக்கநிலை

நேர் அழுத்த முறையில் மின்னழுத்தம் தரும் பொழுது இருமுனையம் மின்னோட்டத்தை அனுமதிக்கும். இந்நிலையில் இருமுனையம் ஒரு எதிர்ப்பற்ற சுற்று (முழுக்கடத்தி இழை) போல் செயல்படும்.

எதிர் அழுத்த முறையில் மின்னழுத்தம் தரும் பொழுது இருமுனையம் மின்னோட்டத்தை அனுமதிக்காது. இந்நிலையில் இருமுனையம் ஒரு விடு்பட்ட சுற்று (அறுந்த சுற்று) போல் செயற்படும்.

எதிர் அழுத்த முறையில் மின்னழுத்தம் தந்தால் இருமுனையம் அதிகம் கடத்தாது என்பது ஒரு குறிப்பட்ட அளவு எதிர் மின்னழுத்தம் வரையிலும் தான். அக் குறிப்பிட்ட எதிர்ம மின்னழுத்தத்தை மீறினால், கட்டின்றி அதிக அளவு மின்னோட்டத்தை எதிர் திசையிலும் கடத்தும். இந்நிலைக்கு முறிவியக்கம் என்று பெயர். இந்நிலையிலும் இருமுனையம் சிறப்பாக பயன்படுகின்றது. ஏனெனில், இருமுனையத்தின் இடையே உள்ள மின்னழுத்தம் அதிகம் மாறாமல் இருமுனையம் வழியே வேண்டிய அளவு மின்னோட்டம் பாய முடியும். அதன் மின்னாற்றல் திறனின் எல்லை அளவை மீறாதிருந்தால் போதுமானது. இவ்வகை பயன்பாட்டிற்காகவே சீனர் இருமுனையங்கள் (Zener Diodes) உற்பத்தி செய்யப்படுகின்றன.

மேலே விளக்கப்பட்ட இருமுனைய தொழிற்பாடுகள் கருத்தியல் (ideal) இருமுனையங்களுக்கே பொருந்தும். பயன்பாட்டிலுள்ள இருமுனைய தொழிற்பாடுகள் சற்று வேறுபடும். குறிப்பாக நேர் அழுத்த முறையில் மின்னழுத்த அளவு 0 V அல்லாமல் சுமார் 0.7 V ஆக அமைந்திருக்கும்.

இருமுனையம் வழியே பாயும் மின்னோட்டம்[தொகு]

இருமுனையம் வழியே பாயும் மின்னோட்டம்  \ I_\mathrm{D} என்றும், இருமுனையத்தின் இருமுனைக்கும் இடையே உள்ள மின்னழுத்தம்  \ V_\mathrm{D} என்றும் கொண்டால், இருமுனையத்தின் ஊடே பாயும் மின்னோட்டம்:

I_\mathrm{D}=I_\mathrm{S} \left( {e^{qV_\mathrm{D} \over kT}-1} \right)\,

மேலே உள்ள சமன் பாட்டில்  \ I_\mathrm{S} என்பது எதிர் அழுத்த முறையில் பாயும் மிக மிகச் சிறிதளவான மின்னோட்டம். மேலே உள்ள சமன்பாட்டை (ஈடுகோளை) இன்னும் சுருக்கமாக எழுத,

\frac{k T}{q} = V_{\gamma}

என்றும் n=1 என்றும் கொண்டால் இருமுனையத்தின் மின்னோட்ட-மின்னழுத்த உறவை கீழ்க்காணுமாறு எழுதலாம்:

I_\mathrm{D}=I_\mathrm{S} \left( {e^{V_\mathrm{D} \over V_{\gamma}}-1} \right)\,

மேலுள்ளதில் அறை வெப்பநிலையில் (300 K) V_{\gamma} = 25 mV என்பது குறிப்பிட்ட வெப்பநிலையில் மாறா ஒரு நிலையெண்..

நுட்பியல் சொற்கள்[தொகு]

வெளி இணைப்புகள்[தொகு]

"http://ta.wikipedia.org/w/index.php?title=இருமுனையம்&oldid=1622784" இருந்து மீள்விக்கப்பட்டது