முற்றொருமை உறுப்பு
கணிதத்தில், ஓர் உறுப்பின்மீது ஓர் ஈருறுப்புச் செயலியைச் செயல்படுத்தும் போது எந்தவொரு மாற்றமும் இல்லாமல் அதே உறுப்பு விளைவாகக் கிடைத்தால், அந்த உறுப்பானது அந்த ஈருறுப்புச் செயலுக்குரிய முற்றொருமை உறுப்பு (Identity element) எனப்படுகிறது. [1][2] குலங்கள் மற்றும் குலமன்கள் சம்பந்தப்பட்ட கருத்துருக்களில் முற்றொருமை உறுப்பு பயன்படுத்தப்படுகிறது. முற்றொருமை உறுப்பைச் சுருக்கமாக முற்றொருமை என்றும் அழைக்கப்படுகிறது.[3]
முற்றொருமை உறுப்பு, ஒற்றொருமை அல்லது சமனி உறுப்பு அல்லது சமனி எனவும் அழைக்கப்படும்.
வரையறை
[தொகு](S,*) என்பது, கணம் S ம் அதில் வரையறுக்கப்பட்ட ஈருறுப்புச் செயலி * ம் சேர்ந்த குலமன் என்க.
S ன் ஒரு உறுப்பு e ஆனது S லுள்ள ஏதேனும் ஒரு உறுப்பு aக்கு
e * a = a எனில், e இடது முற்றொருமை எனவும்,
a * e = a எனில் e வலது முற்றொருமை எனவும் அழைக்கப்படுகிறது.
e இடது மற்றும் வலது முற்றொருமை இரண்டுமாக இருந்தால் அது இருபக்க முற்றொருமை அல்லது முற்றொருமை என அழைக்கப்படுகிறது.
கூட்டல் செயலைப் பொறுத்த முற்றொருமை, கூட்டல் முற்றொருமை (பெரும்பாலும் 0 எனக் குறிக்கப்படும்) எனவும் பெருக்கல் செயலைப் பொறுத்த முற்றொருமை, பெருக்கல் முற்றொருமை (பெரும்பாலும் 1 எனக் குறிக்கப்படும்) எனவும் அழைக்கப்படுகின்றன. வளையங்கள் போன்ற இரு ஈருறுப்புச் செயலிகளையும் கொண்ட கணங்களுக்கு இந்த இரு முற்றொருமைகளை வேறுபடுத்திக் காட்டுவதற்காகப், பெருக்கல் முற்றொருமை பலநேரங்களில் அலகு என்று அழைக்கப்படுகிறது. ஆனால் வளையத்தில் சில சமயங்களில் அலகு என்பது நேர்மாறு உடைய உறுப்பைக் குறிப்பதற்கும் பயன்படுத்தப்படுவதையும் கருத்தில் கொள்ள வேண்டும்.
எடுத்துக்காட்டுகள்
[தொகு]கணம் | செயலி | முற்றொருமை |
---|---|---|
மெய்யெண்கள் | + (கூட்டல்) | 0 |
மெய்யெண்கள் | · (பெருக்கல்) | 1 |
மெய்யெண்கள் | ab (அடுக்கேற்றம்) | 1 (வலது முற்றொருமை மட்டும்) |
நேர்மமுழு எண்கள் | மீச்சிறு பொது மடங்கு | 1 |
எதிரிலா முழு எண்கள் | மீப்பெரு பொது வகுத்தி | 0 (மீப்பெரு பொது வகுத்தியின் பெரும்பான்மை வரையறைப்படி) |
m x n அணி | + (கூட்டல்) | பூச்சிய அணி |
n x n சதுர அணிகள் | · (பெருக்கல்) | In (முற்றொருமை அணி) |
கணம் M லிருந்து M க்கு வரையறுக்கப்பட்ட அனைத்து சார்புகள் | ∘ (சார்புகளின் தொகுப்பு) | முற்றொருமைச் சார்பு |
கணம் M லிருந்து M க்கு வரையறுக்கப்பட்ட அனைத்து சார்புகள் | * (சுருளல்) | δ (டிரக் டெல்ட்டா) |
நீட்டிக்கப்பட்ட மெய்யெண்கள் | சிறுமம்/தாழ்மம் | +∞ |
நீட்டிக்கப்பட்ட மெய்யெண்கள் | பெருமம்/மேன்மம் | −∞ |
M என்ற கணத்தின் அனைத்து உட்கணங்கள் | ∩ (வெட்டு) | M |
கணம் | ∪ (ஒன்றிப்பு) | { } (வெற்றுக் கணம்) |
பூலியன் தர்க்கம் | ∧ - மற்றும் (தர்க்கம்) | ⊤ (மெய்) |
பூலியன் தர்க்கம் | ∨ - அல்லது (தர்க்கம்) | F (தவறு) |
- ↑ Weisstein, Eric W. "Identity Element". mathworld.wolfram.com (in ஆங்கிலம்). Retrieved 2019-12-01.
- ↑ "Definition of IDENTITY ELEMENT". www.merriam-webster.com. Retrieved 2019-12-01.
- ↑ "Identity Element". www.encyclopedia.com. Retrieved 2019-12-01.