அணுகுகோடு

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்
கிடைமட்ட, நிலைக்குத்தான மற்றும் சாய்ந்த அணுகுகோடுகளுடைய ஒரு சார்பின் வரைபடம்.
அணுகுகோட்டை முடிவற்ற எண்ணிக்கையில் வெட்டும் ஒரு வளைவரை.

பகுமுறை வடிவவியலில் ஒரு வளைவரையின் அணுகுகோடு (asymptote) என்பது அவ்வளைவரையும் ஒரு கோடும் முடிவிலியை நோக்கிச் செல்லச் செல்ல அவ்விரண்டிற்கும் இடையேயுள்ள தூரமானது பூச்சியத்தை அணுகும் விதத்தில் அமைந்த கோடாகும். சில ஆதாரங்கள் வளைவரையானது அணுகுகோட்டை முடிவிலா எண்ணிக்கையில் சந்திக்காது என்ற கருத்தைக் கொண்டிருந்தாலும் தற்கால எழுத்தாளர்கள் அவ்விதம் கருதுவதில்லை. [1] இயற்கணித வடிவவியல் போன்றவற்றில் அணுகுகோடுகள் வளைவரையை முடிவிலியில் தொடுகின்ற தொடுகோடுகளாக (தொலைத் தொடுகோடுகள்) வரையறுக்கப்படுகின்றன.[2][3]

ஒன்றாகச் சேராத என்ற பொருளுடைய கிரேக்க மொழி வார்த்தையான ἀσύμπτωτος (asímptotos) -லிருந்து ஆங்கிலத்தில் அணுகுகோட்டிற்கு asymptote என்ற பெயர் உருவானது.[4] பெர்காவின் அப்பலோனியசால் அவரது படைப்பான கூம்பு வெட்டுகள் -ல் (conic sectins) இப்பெயர் அறிமுகப்படுத்தப்பட்டது. ஆனால் தற்போதைய பயன்பாடு போலல்லாமல், அவர் இப்பெயரை, தரப்பட்ட வளைவரையை வெட்டாத கோடு என்ற பொருளில் பயன்படுத்தியுள்ளார்.[5]

கிடையான, நிலைக்குத்தான மற்றும் சாய்ந்த அணுகுகோடுகள் என மூன்று வகையான அணுகுகோடுகள் உள்ளன. y = ƒ(x)என்ற சார்பின் வரைபடத்திற்கு x ஆனது +∞ அல்லது −∞. -ஐ நெருங்கும்போது வளைவரையின் வரைபடம் எந்த கிடையான கோடுகளுக்கு அருகாமையில் முடிவில்லாமல் நீண்டு கொண்டே போகிறதோ அவை வளைவரையின் கிடையான அணுகுகோடுகள். இதேபோல வளைவரையின் வரைபடம் எந்த நிலைக்குத்தான கோடுகளுக்கு அருகாமையில் முடிவில்லாமல் நீண்டு கொண்டே போகிறதோ அவை வளைவரையின் நிலைக்குத்தான அணுகுகோடுகள். இரு வளைவரைகள் முடிவிலியை நோக்கிச் செல்லச் செல்ல அவற்றுக்கு இடையேயுள்ள தூரம் குறைந்து கொண்டே வந்து பூச்சியத்தை அணுகுமானால் அவ்விரண்டு வளைவரைகளும் ஒன்றுக்கொன்று வளைந்த அணுகுகோடுகளாக அமையும். ஒரு சார்பின் வரைபடம் வரைவதற்கு அதன் அணுகோட்டினைப் பற்றி அறிந்திருத்தல் அவசியம். [6]

ஒரு எளிய எடுத்துக்காட்டு[தொகு]

கார்ட்டீசியன் ஆயதளத்தில் f(x)=\tfrac{1}{x} சார்பின் வரைபடம். x மற்றும் y-அச்சுகள் அணுகுகோடுகள்.

y=1/x சார்பின் வரைபடம் வலப்புறத்திலுள்ள படத்தில் தரப்பட்டுள்ளது.

இந்த வளைவரையின் மீது அமையும் புள்ளிகளின் அச்சுதூரங்கள்:
(x, 1/x). (இங்கு x பூச்சியம் அல்ல.)
அதாவது (1, 1), (2, 0.5), (5, 0.2), (10, 0.1), ...

x -ன் மதிப்பு அதிகமாக அதிகமாக (100, 1000, 10,000 ...,) அவற்றுக்குரிய y மதிப்புகள் (.01, .001, .0001, ...,) மிகவும் நுண்ணியமாகக் குறைந்து கொண்டே போகும். ஆனால் x -ன் மதிப்பு எவ்வளவுதான் அதிகரித்தாலும் எந்நிலையிலும் 1/x -ன் மதிப்பு 0 ஆகாது. அதாவது வளைவரை x-அச்சைச் சந்திக்கவே சந்திக்காது. மாறாக x -ன் மதிப்பு குறைந்து கொண்டே போகும் போது (.01, .001, .0001, ...) அவற்றுக்குரிய y மதிப்புகள் கூடிக்கொண்டே போகும் (100, 1000, 10,000 ...) எனவே y-அச்சுக்கு அருகில் நெருங்கி வரவர வளைவரை மேல்நோக்கி நீண்டு கொண்டே போகும். எனவே x மற்றும் y-அச்சுகள் இரண்டும் வளைவரையின் அணுகுகோடுகளாக இருக்கும்.

சார்புகளின் அணுகுகோடுகள்[தொகு]

அணுகுகோடு கணிதத்தின் எல்லை-கருத்துருவின் அடிப்படையில் அமைகிறது.[7] பொதுவாக நுண்கணிதத்தில் y = ƒ(x) சார்புகளின் அணுகுகோடுகளைப் பற்றிய விவரங்கள் கண்டறியப்படுகின்றன. முதலில் எல்லை-கருத்தைப் பயன்படுத்தி அணுகுகோடுகளைக் கண்டுபிடித்துக் கொண்டு பின் அவற்றின் திசைப்போக்கைப் பொறுத்து அவற்றைக் கிடையான, நிலைக்குத்தான அல்லது சாய்ந்த அணுகுகோடுகள் என வகைப்படுத்தலாம்.

கிடையான அணுகுகோடு[தொகு]

இரண்டு கிடையான அணுகுகோடுகள் கொண்ட சார்பு y=\arctan(x).

x ஆனது +∞ அல்லது −∞. -ஐ நெருங்கும்போது வளைவரையின் வரைபடம் எந்த கிடையான கோடுகளுக்கு அருகாமையில் முடிவில்லாமல் நீண்டு கொண்டே போகிறதோ அவை வளைவரையின் கிடையான அணுகுகோடுகள். இவை x-அச்சுக்கு இணையாக அமையும்.

கோடு y = c , y = ƒ(x) சார்பின் கிடையான அணுகுகோடாக அமைய:

\lim_{x\rightarrow -\infty}f(x)=c
(அல்லது)
\lim_{x \to +\infty} f(x) = c. ஆக இருத்தல் வேண்டும்.

முதலாவதில் x -ன் மதிப்பு −∞ -ஐ நெருங்கும்போது ƒ(x) -ன் அணுகுகோடு: y = c

இரண்டாவதில் x -ன் மதிப்பு +∞ -ஐ நெருங்கும்போது ƒ(x) -ன் அணுகுகோடு y = c

எடுத்துக்காட்டு:

  • y = ƒ(x) =  arctanx
\lim_{x\rightarrow -\infty}\arctan(x)=-\pi/2
(மற்றும்)
\lim_{x\rightarrow+\infty}\arctan(x)=\pi/2.

x -ன் மதிப்பு −∞ -ஐ நெருங்கும்போது ƒ(x) -ன் கிடையான அணுகுகோடு: y = −π/2

x -ன் மதிப்பு +∞ -ஐ நெருங்கும்போது ƒ(x) -ன் கிடையான அணுகுகோடு: y = π/2

ஏதாவது ஒருபுறத்தில் அல்லது இருபுறமும் கிடையான அணுகுகோடுகள் இல்லாத அல்லது ஒரே கோட்டை இரண்டு திசைகளிலும் கிடையான அணுகுகோடாகக் கொண்டதுமான சார்புகள் உள்ளன.

எடுத்துக்காட்டு:

  • ƒ(x) = 1/(x2+1) சார்புக்கு x -ன் மதிப்பு -∞ மற்றும் +∞ இரண்டையும் நெருங்கும்போதும் y = 0 என்பது அணுகுகோடாக அமைகிறது.

ஏனெனில்:

\lim_{x\to -\infty}\frac{1}{x^2+1}=\lim_{x\to +\infty}\frac{1}{x^2+1}=0.

நிலைக்குத்தான அணுகுகோடுகள்[தொகு]

வளைவரையின் வரைபடம் எந்த நிலைக்குத்தான கோடுகளுக்கு அருகாமையில் முடிவில்லாமல் நீண்டு கொண்டே போகிறதோ அக்கோடுகள் வளைவரையின் நிலைக்குத்தான அணுகுகோடுகள். இவை x-அச்சுக்குச் செங்குத்தாக அமையும்.

கோடு x = a , y = ƒ(x) சார்பின் நிலைக்குத்தான அணுகுகோடாக அமைய கீழேயுள்ள கூற்றுகளில் குறைந்தது ஒன்றாவது உண்மையாக இருக்க வேண்டும்.

  1. \lim_{x \to a^{-}} f(x)=\pm\infty
  2. \lim_{x \to a^{+}} f(x)=\pm\infty.

சார்பு ƒ(x), a-ல் வரையறுக்கப்பட்டிருக்கலாம் அல்லது வரையறுக்கப்படாமலும் இருக்கலாம். x = a -ல் சார்பின் துல்லிய மதிப்பு அணுகுகோட்டைப் பாதிக்காது.

எடுத்துக்காட்டாக:

f(x) = \begin{cases} \frac{1}{x} & \mbox{if } x > 0, \\ 5 & \mbox{if  } x \le 0. \end{cases}

இச்சார்புக்கு x → 0+ எனும்போது +∞ எல்லமைதிப்பாகக் கிடைக்கிறது. ƒ(0) = 5 ஆக இருந்தாலும் இச்சார்பின் வளைவரையின் நிலைக்குத்தான அணுகுகோடு: x = 0. வளைவரை இந்த அணுகுகோட்டை ஒருமுறை (0,5) புள்ளியில் சந்திக்கிறது. ஒரு நிலைக்குத்தான அணுகுகோட்டை ஒரு சார்பின் வரைபடம் ஒரு முறைக்கு அதிகமாக வெட்டாது.

சுருக்கமாகச் சொல்வதென்றால், ஒரு சார்பின் நிலைக்குத்தான அணுகுகோடுகள் காண அச்சார்பின் சமன்பாட்டின் பகுதியின் தீர்வுகளைக் காண வேண்டும்.

சாய்ந்த அணுகுகோடுகள்[தொகு]

f(x)=x+\tfrac{1}{x} சார்பின் வரைபடத்தில், y-அச்சு (x = 0) மற்றும் கோடு y= x இரண்டும் அணுகுகோடுகள்.

x ஆனது +∞ அல்லது −∞. -ஐ நெருங்கும்போது வளைவரையின் வரைபடம் எந்த குறுக்குக் கோடுகளுக்கு அருகாமையில் முடிவில்லாமல் நீண்டு கொண்டே போகிறதோ (குறுக்குக் கோட்டிற்கும் வளைவரைக்கும் இடையேயுள்ள தூரம் பூச்சியத்தை நெருங்கும்.) அக்குறுக்குக் கோடுகள் வளைவரையின் சாய்ந்த அணுகுகோடுகள்.

சாய்ந்த அணுகுகோடுகள் x அல்லது y -அச்சுகளுக்கு இணையாக இருக்காது.

y = mx + n (m ≠ 0) கோடானது f(x) -க்கு அணுகுகோடாக இருக்கவேண்டுமெனில்:

  • \lim_{x \to +\infty}\left[ f(x)-(mx+n)\right] = 0 \,
(அல்லது)
  • \lim_{x \to -\infty}\left[ f(x)-(mx+n)\right] = 0. ஆக இருக்க வேண்டும்.

முதல் கட்டுப்பாட்டின்படி x -ன் மதிப்பு +∞ ஐ நெருங்கும்போது ƒ(x) சார்பின் சாய்ந்த அணுகுகோடு y = mx + n

இரண்டாவது கட்டுப்பாட்டின்படி x -ன் மதிப்பு -∞ ஐ நெருங்கும்போது ƒ(x) சார்பின் சாய்ந்த அணுகுகோடு y = mx + n

எடுத்துக்காட்டு:

  • ƒ(x) = x−1/x சார்பின் சாய்ந்த அணுகுகோடு y = x (m = 1, n = 0)
\lim_{x\to\pm\infty}\left[f(x)-x\right]
=\lim_{x\to\pm\infty}\left[\frac{x^2-1}{x}-x\right]
=\lim_{x\to\pm\infty}\left[(x-\frac{1}{x})-x\right]
=\lim_{x\to\pm\infty}-\frac{1}{x}=0.

அணுகுகோடுகளை அடையாளம் காண எளிய முறைகள்[தொகு]

சாய்ந்த அணுகுகோடுகள்[தொகு]

f(x), சார்பின் சாய்ந்த அணுகுகோட்டின் சமன்பாடு y=mx+n எனில்:

முதலில் m -ன்மதிப்புக் காணப்படுகிறது:

m\stackrel{\text{def}}{=}\lim_{x\rightarrow a}f(x)/x

இங்கு a -ன் மதிப்பு, -\infty அல்லது +\infty ஆக இருக்கும். இந்த எல்லையின் மதிப்பு இல்லாத திசைப்போக்கில், (-\infty அல்லது +\infty) சார்புக்கு சாய்ந்த அணுகுகோடு இருக்காது.

இந்த m மதிப்புடன் n -மதிப்புப் பின்வருமாறு கணக்கிடப்படுகிறது:

n\stackrel{\text{def}}{=}\lim_{x\rightarrow a}(f(x)-mx)

இங்கும் a -ன் மதிப்பு, -\infty அல்லது +\infty ஆக இருக்கும். m -ஐ வரையறுக்கும் எல்லை மதிப்புக் காணமுடிந்தாலும் n -ஐக் காணும் எல்லைமதிப்பு இல்லையென்றால் சார்புக்குச் சாய்ந்த அணுகோடுகள் கிடையாது.

இரண்டு எல்லை மதிப்புகளும் காண முடிந்தால் x -ன் மதிப்பு a -ஐ நெருங்கும் போது ƒ(x) -ன் சாய்ந்த அணுகுகோடு y = mx + n.

எடுத்துக்காட்டுகள்:

  • ƒ(x) = (2x2 + 3x + 1)/x
m=\lim_{x\rightarrow+\infty}f(x)/x=\lim_{x\rightarrow+\infty}\frac{2x^2+3x+1}{x^2}=2
n=\lim_{x\rightarrow+\infty}(f(x)-mx)=\lim_{x\rightarrow+\infty}\left(\frac{2x^2+3x+1}{x}-2x\right)=3

எனவே x -ன் மதிப்பு +∞ -ஐ நெருங்கும் போது, ƒ(x) -ன் சாய்ந்த அணுகுகோடு y = 2x + 3

  • ƒ(x) = ln x
m=\lim_{x\rightarrow+\infty}f(x)/x=\lim_{x\rightarrow+\infty}\frac{\ln x}{x}=0
n=\lim_{x\rightarrow+\infty}(f(x)-mx)=\lim_{x\rightarrow+\infty}\ln x, இந்த எல்லைமதிப்பு இல்லை

எனவே இச்சார்புக்கு x -ன் மதிப்பு, +∞ -ஐ நெருங்கும்போது சாய்ந்த அணுகுகோடு இல்லை .

விகிதமுறு சார்புகளின் அணுகுகோடுகள்[தொகு]

எந்தவொரு விகிதமுறு சார்புக்கும் குறைந்தது ஒரு கிடையான அல்லது சாய்ந்த அணுகுகோடும் உண்டு. நிலைக்குத்தான அணுகுகோடுகள் பல இருக்கலாம்.

விகிதமுறு சார்பின் தொகுதி மற்றும் பகுதியின் அடுக்குகள்தான் அச்சார்பின் கிடையான அல்லது சாய்ந்த அணுகுகோடுகளைத் தீர்மானிக்கின்றன. பின்வரும் அட்டவணை இதற்கான எடுத்துக்காட்டுகளைத் தருகிறது.

விகிதமுறு சார்புகளின் கிடையான மற்றும் சாய்ந்த அணுகுகோடுகளின் அட்டவணை
தொகுதியின் அடுக்கு −
பகுதியின் அடுக்கு
அணுகுகோடுகள் எடுத்துக்காட்டு, அணுகுகோடு
< 0 y = 0 \frac{1}{x^2+1}, y=0
= 0 y = முதன்மை கெழுக்களின் விகிதம் \frac{2x^2+7}{3x^2+x+12}, y=\frac{2}{3}
= 1 y = ஈவு, தொகுதியைப் பகுதியால் வகுக்கக் கிடைக்கும் பல்லுறுப்புக்கோவை \frac{x^2+x+1}{x}, y=x+1
> 1 எதுவுமில்லை \frac{2x^4}{3x^2+1}, எதுவுமில்லை

விகிதமுறு சார்பின் பகுதி பூச்சியமாக இருக்கும்போது நிலைக்குத்தான அணுகுகோடுகள் இருக்கும்.

எடுத்துக்காட்டு:

f(x)=\frac{x^2-5x+6}{x^3-3x^2+2x}=\frac{(x-2)(x-3)}{x(x-1)(x-2)} இச்சார்புக்கு x = 0, and x = 1 என்ற நிலைக்குத்தான அணுகுகோடுகள் உள்ளன (ஆனால் x = 2, அணுகுகோடு அல்ல).


விகிதமுறு சார்புகளின் சாய்ந்த அணுகுகோடுகள்[தொகு]

கருப்பு:f(x)=(x^2+x+1)/(x+1) சார்பின் வரைபடம். சிவப்பு: அணுகுகோடு y=x. பச்சை: வரைபடத்திற்கும் அதன் அணுகுகோட்டிற்கும் இடையேயுள்ள தூரம் (x=1,2,3,4,5,6)

ஒரு விகிதமுறு சார்பின் பகுதியின் அடுக்கைவிட தொகுதியின் அடுக்கு சரியாக ஒன்று அதிகமாக இருந்தால் அச்சார்புக்கு ஒரு சாய்ந்த அணுகுகோடு இருக்கும். இச்சார்பின் தொகுதியைப் பகுதியால் வகுத்தபின் கிடைக்கும் பல்லுறுப்புக்கோவை அந்தச் சாய்ந்த அணுகுகோட்டைத் தரும்.

எடுத்துக்காட்டு:

  • f(x)=\frac{x^2+x+1}{x+1}=x+\frac{1}{x+1}

x -ன் மதிப்பு அதிகரிக்க அதிகரிக்க 1/(x+1) -ன் மதிப்பு சிறிதாகிக் கொண்டே செல்வதால், x -ன் மதிப்பு அதிகரிக்க அதிகரிக்க f -ன் வரைபடம், அணுகுகோடு y = x -ஐ நெருங்கும். (படத்தில் காட்டப்பட்டுள்ளது போல).

தொகுதியின் அடுக்கு பகுதியின் அடுக்கைவிட ஒன்றுக்கும் அதிகமாக இருந்தால் தொகுதியைப் பகுதியால் வகுத்தபின் கிடைக்கும் பல்லுறுப்புக்கோவையின் அடுக்கு ஒன்றுக்கும் அதிகமாக இருக்கும். எனவே அச்சார்புக்கு சாய்ந்த அணுகுகோடு கிடையாது.

சார்புகளின் உருமாற்றங்கள்[தொகு]

அணுகுகோடுடைய ஒரு சார்பின் (f(x)=ex-ன் அணுகுகோடு y=0) இடப்பெயர்ச்சிச் சார்புகளுக்கும் அணுகுகோடுகள் உண்டு.

  • f(x) -ன் நிலைக்குத்தான அணுகுகோடு x=a எனில் f(x-h) -ன் நிலைக்குத்தான அணுகுகோடு x=a+h
  • f(x) -ன் கிடையான அணுகுகோடு y=c எனில், f(x)+k) -ன் கிடையான அணுகுகோடு y=c+ k
  • f(x) -ன் அணுகுகோடு y=ax+b எனில், cf(x) -ன் அணுகுகோடு y=cax+cb

அணுகுகோடுகளும் வளைவரை வரைதலும்[தொகு]

ஒரு சார்பின் வளைவரை வரைதலில் அதன் அணுகுகோடுகள் பெரிதும் பயன்படுகின்றன. முடிவிலியை நோக்கிச் செல்லச் செல்ல சார்பின் தன்மையைப் பற்றி அறிந்துகொள்ள அணுகுகோடுகள் வழிகாட்டுகின்றன.[8] ஒரு சார்புக்கு அணுகுகோடுகளாக அமையும் வளைவரைகளும் அச்சார்பின் வரைபடம் வரையப் பயன்படுகின்றன.[9] அத்தகைய வளைவரைகள் அணுகுவளைவரைகள் எனப்படும்.[10]

பிற பயன்பாடுகள்[தொகு]

அதிபரவளையங்கள்

\frac{x^2}{a^2}-\frac{y^2}{b^2}=\pm 1

இவற்றின் அணுகுகோடுகள்:

y=\pm\frac{b}{a}x.

இவ்விரண்டு கோடுகளின் சேர்ந்த சமன்பாடு:

\frac{x^2}{a^2}-\frac{y^2}{b^2}=0.

இதேபோல அதிபரவளையத் திண்மங்கள்:

\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=\pm 1

இவற்றின் அணுகுகூம்பு[11][12]

\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=0.

ஆதிப்புள்ளியிலிருந்து முடிவிலியை நோக்கிச் செல்லச் செல்ல அதிபரவளையத்திண்மத்திற்கும் இக்கூம்பிற்கும் இடையேயுள்ள தூரம் பூச்சியத்தை நெருங்குகிறது.

மேற்கோள்கள்[தொகு]

General references:

Specific references:

  1. "Asymptotes" by Louis A. Talman
  2. Williamson, Benjamin (1899), "Asymptotes", An elementary treatise on the differential calculus, http://books.google.com/?id=znsXAAAAYAAJ&pg=241 
  3. Nunemacher, Jeffrey (1999), "Asymptotes, Cubic Curves, and the Projective Plane", Mathematics Magazine 72 (3): 183–192, doi:10.2307/2690881 
  4. Oxford English Dictionary, second edition, 1989.
  5. D.E. Smith, History of Mathematics, vol 2 Dover (1958) p. 318
  6. Apostol, Tom M. (1967), Calculus, Vol. 1: One-Variable Calculus with an Introduction to Linear Algebra (2nd ed.), New York: John Wiley & Sons, ISBN 978-0-471-00005-1 , §4.18.
  7. Reference for section: "Asymptote" The Penny Cyclopædia vol. 2, The Society for the Diffusion of Useful Knowledge (1841) Charles Knight and Co., London p. 541
  8. Frost, P. An elementary treatise on curve tracing (1918) online
  9. Fowler, R. H. The elementary differential geometry of plane curves Cambridge, University Press, 1920, pp 89ff.(online at archive.org)
  10. Frost, P. An elementary treatise on curve tracing, 1918, page 5
  11. L.P. Siceloff, G. Wentworth, D.E. Smith Analytic geometry (1922) p. 271
  12. P. Frost Solid geometry (1875) This has a more general treatment of asymptotic surfaces.

வெளி இணைப்புகள்[தொகு]

"http://ta.wikipedia.org/w/index.php?title=அணுகுகோடு&oldid=1496994" இருந்து மீள்விக்கப்பட்டது