திசையன் வெளியின் பரிமாணம்

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
Jump to navigation Jump to search

கணிதத்தில், திசையன் வெளியின் பரிமாணம் (Dimension of Vector Space) என்பது திசையன் வெளியினுடைய ஒரு அடுக்களத்திலிருக்கும் திசையன்களின் எண் அளவை. இதை 'ஹாமெல் பரிமாணம்' அல்லது 'இயற்கணித பரிமாணம்' என்றும் சொல்வர். ஒரு திசையன் வெளியின் எல்லா அடுக்களங்களும் ஒரே எண் அளவையுள்ளன. அதனால் திசையன் வெளியின் பரிமாணம் துல்லியமாக வரையறுக்கப்பட்டதாக ஆகிறது. திசையன் வெளியின் அளவெண்களம் F என்றால் அதன் பரிமாணத்தை dimF(V) என்றோ அல்லது [V : F] என்றோ எழுதுவது வழக்கம். அளவெண்களம் என்னதென்று சந்தர்ப்பத்திலிருந்து தெரிகிற பட்சத்தில், dim(V) என்று எழுதினாலே போதும்.

dim(V) முடிவுறு எண் அளவையாக இருந்தால், அத்திசையன்வெளி முடிவுறு பரிமாணமுள்ளது என்று சொல்வோம்.

எடுத்துக்காட்டுகள்[தொகு]

dimR(R3) = 3. ஏனென்றால் R3 க்கு {(1,0,0), (0,1,0), (0,0,1)} என்ற மூன்று திசையன்கள் அடுக்களமாகின்றன.

dimR(Rn) = n.

dimF(Fn) = n இங்கு F என்பது ஏதாவதொரு களம்.

சிக்கலெண்களின் களமான C ஐ மெய்த்திசையன் வெளியாகவும் கருதலாம், சிக்கற்திசையன் வெளியாகவும் கருதலாம். அதனால்,


dimR(C) = 2
dimC(C) = 1.

ஒரு சூனியத்தை மாத்திரம் தனது திசையனாகவுடைய, சூனியத்திசையன் வெளியின் பரிமாணம் சூனியம். இந்த ஒரு திசையன் வெளிக்கு மட்டும்தான் பரிமாணம் சூனியமாக இருக்கும்.

சில முக்கிய தேற்றங்கள்[தொகு]

V ஒரு திசையன் வெளி.

  • U, V இன் உள்வெளியாக இருக்குமானால், dim(U) ≤ dim(V).
  • U, V இன் உள்வெளியாகவும் இருந்து, V முடிவுறுபரிமாணமுள்ளதாகவும் இருக்குமானால்,
  • ஒரே களத்தை அளவெண்களமாகக்கொண்ட இரு திசையன்வெளிகள் ஒரே பரிமாணமுள்ளவையாக இருந்தால், அவைகளின் அடுக்களங்களினிடையில் வரையறுக்கப்படும் எந்த இருவழிக்கோப்பையும் அத்திசையன்வெளிகளினூடே ஒரு இருவழி நேரியல் கோப்பாக விரித்துவிடமுடியும்.
  • இரு முடிவுறு பரிமாணமுள்ள திசையன்வெளிகளுக்கிடையே W ஒரு நேரியல்கோப்பாகவும், R(T) T இன் வீச்சாகவும், N(T) Tஇன் சுழிவாகவும் இருக்குமானால்,
dim(R(T) + dim(N(T) = dim V

இதற்கு வீச்சளவை சுழிவளவை தேற்றம் (Rank-Nullity Theorem) எனப்பெயர்.

இவற்றையும் பார்க்கவும்[தொகு]