சிக்கலெண்

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
(செறிவெண் இலிருந்து வழிமாற்றப்பட்டது)
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்
a + bi -சிக்கலெண் ஆர்கன் வரைபடத்தில் ஒரு திசையனைக் குறிக்கும் (a, b) புள்ளியால் குறிக்கப்பட்டுள்ளது. இங்கு x அச்சு-மெய் அச்சு என்றும் y அச்சு-கற்பனை அச்சு என்றும் பெயர்பெறுகின்றன. i2 = −1 என அமையும் கற்பனை அலகு i.

கணிதவியலில் சிக்கலெண், கலப்பெண் அல்லது செறிவெண் (Complex Number) என்பது ஒரு மெய்யெண்ணும் ஒரு கற்பனை எண்ணும் சேர்ந்த ஒரு கூட்டெண் ஆகும்.

a, b என்பது இரு மெய்யெண்களைக் குறிப்பதாக இருந்தால் c என்னும் சிக்கலெண்ணானது கீழ்க்காணுமாறு குறிக்கப்படும்:

மேலே குறிப்பிட்ட i என்பது கற்பனை எண்ணைக் குறிப்பிடும் அலகு. இதன் மதிப்பு i 2 = −1. என்னும் சிக்கலெண்ணில், என்னும் மெய்யெண்ணை மெய்ப் பகுதி என்றும், என்னும் மெய்யெண்ணைக் கற்பனைப் பகுதி என்றும் அழைக்கப்படும். கற்பனைப் பகுதி ஆனது பூச்சியமாக (சுழியமாக) இருக்குமானால் அந்த சிக்கலெண் வெறும் மெய்யெண்ணாகும்; மெய்ப்பகுதி பூச்சியமானால் அந்தச் சிக்கலெண் வெறும் கற்பனை எண்ணாகும். எடுத்துக்காட்டாக, 3 + 2i என்பது ஒரு சிக்கலெண். இச் சிக்கலெண்ணின் மெய்ப்பகுதி 3 ஆகும், கற்பனைப்பகுதி 2 ஆகும்.

சிக்கலெண்களை மெய்யெண்களைப் போலவே கூட்டவும், கழிக்கவும், பெருக்கவும், வகுக்கவும் இயலும். a3x3+a2x2+a1x+a0 போன்ற பல்லடுக்குத் தொடர்களின் மூலங்களை (roots) பொதுவாக, அதாவது எல்லா நேரங்களிலும் மெய்யெண்களை மட்டுமே கொண்டு காண இயலாது. ஆனால் சிக்கலெண்களையும் சேர்த்துக்கொண்டால், இவ்வகை பல்லடுக்குகளுக்குத் தீர்வும் காண இயலும். பொறியியலிலும் அறிவியலிலும் சிக்கலெண்கள் பரவலாக பயன்படுகின்றன.

வரையறைகள்[தொகு]

சிக்கலெண்ணை விளக்கும் வரைபடம். இரு செங்குத்தான அச்சுக் கோடுகளில் கிடைக் கோடு (x-அச்சு) மெய்யெண்ணையும் நெடுக்குக்கோடு (y-அச்சு) கற்பனை எண்ணையும் குறிக்கப் பயன்படுத்தினால், இந்த சமதளத்தில் உள்ள ஒவ்வொரு புள்ளியும் ஒரு சிக்கலெணைக் குறிக்கும்.

, , என்பna இரு மெய்யெண்களைக் குறிப்பதாக இருந்தால் என்னும் சிக்கலெண்ணானது கீழ்க்காணுமாறு குறிக்கப்படும்:

இங்கு i என்பது கற்பனை எண்ணைக் குறிப்பிடும் அலகு. இதன் மதிப்பு i 2 = −1.

என்னும் சிக்கலெண்ணில், என்னும் மெய்யெண்ணை மெய்ப் பகுதி என்றும், என்னும் மெய்யெண்ணைக் கற்பனைப் பகுதி என்றும் அழைக்கப்படும்.[1][2]

மெய்ப்பகுதியின் குறியீடு: Re(z) (அல்லது) ℜ(z),

கற்பனைப்பகுதியின் குறியீடு: Im(z) (அல்லது) ℑ(z).

எடுத்துக்காட்டாக,

கற்பனைப் பகுதி ஆனது பூச்சியமாக இருக்குமானால் அந்த சிக்கலெண் வெறும் மெய்யெண்ணாகும்; மெய்ப்பகுதி பூச்சியமானால் அந்தச் சிக்கலெண் வெறும் கற்பனை எண்ணாகும்.

x = x + 0i
y = 0 + yi

மேலும் ஒரு சிக்கலெண்ணின் கற்பனைப் பகுதி எதிரெண் எனில் அந்த எண்ணை x + (−y)i என்பதற்குப் பதில் xyi, y > 0 என்று எழுதலாம். எடுத்துக்காட்டாக:

3 − 4i = 3 + (−4)i.

இரு சிக்கலெண்கள் ஒன்றுக்கு ஒன்று எப்பொழுது சமம் ஆகும் என்றால், அவ்விரு சிக்கலெண்களின் மெய்ப்பகுதிகளும் சமமாக இருத்தல்வேண்டும்; அதேபோல அவற்றின் கற்பனைப்பகுதிகளும் ஒன்றுக்கொன்று சமமாக இருத்தல் வேண்டும், அப்பொழுது மட்டுமே அவ்விரு சிக்கலெண்களும் சமம் ஆகும்.

அனைத்து சிக்கலெண்களின் கணத்தின் குறியீடு:

(அல்லது) பாகுபடுத்தல் தோல்வி (கூடுமாயின் MathML (சோதனை): Invalid response ("Math extension cannot connect to Restbase.") from server "/mathoid/local/v1/":): {\displaystyle \mathbf{C}} (அல்லது) . மெய்யெண்களின் கணத்தை சிக்கலெண் கணத்தின் ஒரு உட்கணமாகக் கொள்ள முடியும். ஏனெனில் ஒவ்வொரு மெய்யெண்ணும் போன்ற ஒரு சிக்கலெண்தான்.

மாற்றுக் குறியீடு[தொகு]

ஒரு சிக்கலெண் a + bi என்பதற்குப் பதில் a + ib எனவும் சில இடங்களில் குறிக்கப்படுகிறது. மின்காந்தவியல், மின்பொறியியல் போன்றவற்றில் i என்பது மின்னோட்டத்தைக் குறிக்கும் என்பதால், கற்பனை அலகுக்கு i க்குப் பதில் j பயன்படுத்தப்படுகிறது.[3] எனவே இப்பிரிவுகளில் ஒரு சிக்கலெண் a + bj அல்லது a + jb என எழுதப்படுகிறது.

சிக்கலெண் தளம்[தொகு]

என்ற சிக்கலெண் ஆர்கன் வரைபடத்தில் சிவப்புப் புள்ளியாலும் நீல வண்ண நிலைத்திசையனாலும் குறிக்கப்பட்டுள்ளது.

கார்ட்டீசியன் ஆள்கூற்று முறைமையில் ஒரு சிக்கலெண்ணை இருபரிமாணத் தளத்தில் அமைந்த ஒரு புள்ளியாக அல்லது நிலைத்திசையனாகக் கொள்ளலாம். அந்தத் தளம் சிக்கலெண் தளம் அல்லது ஆர்கன் வரைபடம் எனப்படும். சிக்கலெண்ணின் மெய்ப்பகுதியை கிடைமட்ட ஆயதொலைவாகவும், கற்பனைப் பகுதியை நெடுக்குத்து ஆயதொலைவாகவும் கொண்டு புள்ளிகள் குறிக்கப்படுகின்றன. கிடைமட்ட அச்சு-மெய்யச்சு என்றும், நெடுக்குத்து அச்சு-கற்பனை அச்சு என்றும் அழைக்கப்படும். , சிக்கலெண்ணின் கார்ட்டீசிய அல்லது இயற்கணித வடிவமாகும்.

எளிய அடிப்படைச் செயல்கள்[தொகு]

இணையியம்[தொகு]

ஒரு சிக்கலெண் z = a + ib என்று கொண்டால் அதன் இணையியச் சிக்கலெண் a - ib என்பதாகும். எனவே மெய்ப்பகுதி சமமாகவும், கற்பனைப்பகுதி சிக்கலெண்ணில் இருப்பதற்கு எதிர்ம மெய் எண்ணாக இருப்பின் அது இணையியச் சிக்கலெண் எனப்படும். கணிதக் குறியீட்டில் சிக்கலெண்ணைக் குறிக்கும் எழுத்தின் மேலே ஒரு கோடோ, அல்லது ஒரு நாள்மீன் குறியோ அல்லது எழுத்தின் பின்னே ஓர் ஒற்றை மேற்கோள் குறியோ இட்டுக் காண்பிப்பது வழக்கம், எடுத்துக்காட்டுகள் : அல்லது அல்லது . ஆர்கன் வரைபடத்தில், ஒரு சிக்கலெண்ணைக் குறிக்கும் புள்ளியை மெய் அச்சில் பிரதிபலிக்கக் கிடைக்கும் எதிருருப் புள்ளி அச்சிக்கலெண்ணின் இணையியச் சிக்கலெண்ணாக இருக்கும்.

கீழே காணும் சமன்பாடுகள் சரிதான் என்பதைத் தேர்ந்து காணலாம்:

  z என்பது வெறும் மெய் எண்ணாக இருந்தால் மட்டுமே இது உண்மை.
  இது z என்பது பூச்சியமில்லமல் இருந்தால் மட்டுமே இது பொருந்தும்.

கூட்டல், கழித்தல்[தொகு]

வடிவவியல் முறையில், ஓர் இணைகரம் வரைவதன் மூலம் இரு சிக்கலெண்களின் கூடுதல் காணலாம்.

கூடுதல் காணவேண்டிய இரு சிக்கலெண்களின் மெய்ப்பகுதிகள் இரண்டையும் கூட்டி மற்றும் அவற்றின் கற்பனைப்பகுதிகள் இரண்டையும் கூட்ட அவ்விரு சிக்கலெண்களின் கூடுதலாக மற்ற்றொரு சிக்கலெண் கிடைக்கும்:

இதேபோல இரு சிக்கலெண்களைக் கழிக்கலாம்:

ஆர்கன் வரைபடத்தில் இரு சிக்கலெண்களின் கூட்டல்:

இரு சிக்கலெண்கள் A , B எனும் புள்ளிகளால் சிக்கலெண் தளத்தில் குறிக்கப்பட்டால், அவற்றின் கூடுதல் O, A , B ஆகிய புள்ளிகளை மூன்று உச்சிகளாகக் கொண்டு வரையப்பட்ட இணைகரத்தின் நான்காவது உச்சி X குறிக்கும் சிக்கலெண்ணாக இருக்கும்.

பெருக்கலும் வகுத்தலும்[தொகு]

இரு சிக்கலெண்களின் பெருக்கல்:

என்பதை மனதில் கொள்ளவேண்டும்.
விளக்கம்
(பங்கீட்டு விதி)
(கூட்டலின் பரிமாற்று விதி )
(பெருக்கலின் பரிமாற்று விதி)
(கற்பனை அலகின் அடிப்படைப் பண்பு).

இரு சிக்கலெண்களின் வகுத்தல், மேலே தரப்பட்டுள்ள சிக்கலெண்களின் பெருக்கல் மற்றும் மெய்யெண்களின் வகுத்தல் மூலம் வரையறுக்கப்படுகிறது:

விளக்கம்

இங்கு cdi என்பது பகுதியிலுள்ள சிக்கலெண் c + di இன் இணையியச் சிக்கலெண். பகுதிச் சிக்கலெண்ணின் மெய்ப்பகுதி, கற்பனைப் பகுதி இரண்டும் ஒரே சமயத்தில் பூச்சியமாக இருத்தல் கூடாது.

வருக்க மூலம்[தொகு]

a + bi (b ≠ 0) சிக்கலெண்ணின் வர்க்கமூலம் பின்வருமாறு வரையறுக்கப்படுகிறது.

இங்கு sgn என்பது குறிச் சார்பு. ஐ வர்க்கப்படுத்திa + bi கிடைப்பதைக் காணலாம்.[4][5]

என்பது a + bi இன் தனி மதிப்பு அல்லது மட்டு மதிப்பு எனப்படும்.

வாள்முனை ஆள்கூற்று முறைமை வடிவம்[தொகு]

கோணவீச்சு φ, மட்டு மதிப்பு r இரண்டும் ஆர்கன் வரைபடத்தில் ஒரு புள்ளியின் இருப்பிடத்தைக் குறிக்கிறது; அல்லது இரண்டும் இப்புள்ளியின் வாள்முனை ஆள்கூற்று முறைமை ("போலார்") வடிவம்.

மட்டு மதிப்பும் கோணவீச்சும்[தொகு]

சிக்கலெண் தளத்தில் ஒரு புள்ளி P ஐ அதன் x , y-ஆயதொலைவுகளைக் கொண்டு மட்டுமில்லாமல், ஆதிப்புள்ளியிலிருந்து (O) அப்புள்ளியின் (P) தொலைவு மற்றும் OP கோட்டிற்கும் மெய் அச்சிற்கும் நேர்த் திசைக்கும் இடைப்பட்ட கோணம் இரண்டையும் கொண்டும் குறிக்கும் முறை வாள்முனை ஆள்கூற்று முறைமை ("போலார்") வடிவமாகும்.

ஆதிப்புள்ளியிலிருந்து (O) அப்புள்ளியின் (P) தொலைவு, P குறிக்கும் சிக்கலெண்ணின் தனிமதிப்பு அல்லது மட்டு மதிப்பு அல்லது அளவு எனப்படும், OP கோட்டிற்கும் மெய் அச்சிற்கும் நேர்த் திசைக்கும் இடைப்பட்ட கோணம் P குறிக்கும் சிக்கலெண்ணின் கோணவீச்சு எனப்படும்.

சிக்கலெண் z = x + yi இன் மட்டு மதிப்பு:

பாகுபடுத்தல் தோல்வி (கூடுமாயின் MathML (சோதனை): Invalid response ("Math extension cannot connect to Restbase.") from server "/mathoid/local/v1/":): {\displaystyle \textstyle r=|z|=\sqrt{x^2+y^2}.\,}

z ஒரு மெய்யெண் (i.e., y = 0) எனில்:

சிக்கலெண் z இன் கோணவீச்சு:

சிக்கலெண் z இன் கோணவீச்சை இன் மதிப்பை கார்ட்டீசியன் வடிவம் லிருந்து பெறலாம்:[6]

φ இன் மதிப்பு எப்பொழுதும் ரேடியனிலேயே தரப்பட வேண்டும். அதன் அளவுகள் இன் மடங்குகளில் மாறினாலும் கோணவீச்சின் மதிப்பு மாறாது. எனவே கோணவீச்சு பன்மதிப்புக் கொண்டதாக அமையும். (−π,π) இடைவெளியில் அமையும் φ இன் மதிப்பு கோணவீச்சின் முதன்மை மதிப்பு எனப்படும்.

.

r, φ இரண்டும் சேர்ந்து சிக்கலெண்களைக் குறிக்கும் மாற்று முறையான வாள்முனை ஆள்கூற்று முறைமை வடிவம் (போலார் வடிவம்) தருகிறது. போலார் வடிவிலிருந்து கார்டீசியன் வடிவிற்கு மாற்றித்தருவது முக்கோணவியல் வடிவம்:

ஆய்லரின் வாய்ப்பாட்டைப் பயன்படுத்தி இதனைப் பின்வருமாறு தரலாம்:

இதனை மேலும் சுருக்கமாக

என எழுதலாம்.

[குறிப்பு: என்பது என்பதன் சுருக்கம்]

போலார் வடிவில் பெருக்கல், வகுத்தல், அடுக்கேற்றம்[தொகு]

2 + i (நீல முக்கோணம்), 3 + i (சிவப்பு முக்கோணம்) ஆகிய இரு சிக்கலெண்களின் பெருக்கல். சிவப்பு முக்கோணம், நீல முக்கோணத்தின் உச்சியுடன் பொருந்துமாறு சுழற்றப்பட்டு, நீல முக்கோணத்தின் செம்பக்கத்தின் நீளம் √5 அளவு நீட்டிக்கப்படுகிறது.

சிக்கலெண்களில் பெருக்கல், வகுத்தல் மற்றும் அடுக்கேற்றம் ஆகிய செயல்களைச் செய்வது கார்டீசியன் வடிவைவிட போலார் வடிவில் எளியது. தரப்பட்ட இரு சிக்கலெண்கள் z1 = r1(cos φ1 + i sin φ1), z2 =r2(cos φ2 + i sin φ2) எனில்:

பெருக்கல்

அதாவது மேலேயுள்ள இரு சிக்கலெண்களைப் பெருக்குவதால் அவற்றின் மட்டு மதிப்புகள் பெருக்கப்படுகின்றன; அவற்றின் கோணவீச்சுகள் கூட்டப்படுகின்றன.

எடுத்துக்காட்டாக, i =cos(π/2) + i sin (π/2)i ஆல் ஒரு சிக்கலெண்ணைப் பெருக்கினால் அந்த சிக்கலெண்ணின் மட்டு மதிப்பு மாறுவதில்லை; கோணவீச்சு π/2 ரேடியன் அளவு அதிகமாகும். எனவே இப்பெருக்கலால் அந்த சிக்கலெண்ணின் ஆரைவெக்டர் கடிகார திசையில் ஒரு கால்திருப்பத்துக்குள்ளாகும். இப்பிரிவில் தரப்பட்டுள்ள படம் பெருக்கலை வரைபடம் மூலம் தருகிறது.

வகுத்தல்
அடுக்கேற்றம்

சிக்கலெண் z ஐ அதே எண்ணால் n முறை பெருக்கினால் கிடைப்பது:

மேலும் z இன் n ஆம் படிமூலங்கள்:

இங்கு 0 ≤ kn − 1.

மேற்கோள்கள்[தொகு]

  1. Complex Variables (2nd Edition), M.R. Spiegel, S. Lipschutz, J.J. Schiller, D. Spellman, Schaum's Outline Series, Mc Graw Hill (USA), ISBN 978-0-07-161569-3
  2. Aufmann, Richard N.; Barker, Vernon C.; Nation, Richard D. (2007), College Algebra and Trigonometry (6 ed.), Cengage Learning, p. 66, ISBN 0-618-82515-0, http://books.google.com/?id=g5j-cT-vg_wC , Chapter P, p. 66
  3. Brown, James Ward; Churchill, Ruel V. (1996). Complex variables and applications (6th ed.). New York: McGraw-Hill. p. 2. ISBN 0-07-912147-0. "In electrical engineering, the letter j is used instead of i." 
  4. Abramowitz, Milton; Stegun, Irene A. (1964), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Courier Dover Publications, p. 17, ISBN 0-486-61272-4, http://books.google.com/books?id=MtU8uP7XMvoC , Section 3.7.26, p. 17
  5. Cooke, Roger (2008), Classical algebra: its nature, origins, and uses, John Wiley and Sons, p. 59, ISBN 0-470-25952-3, http://books.google.com/books?id=lUcTsYopfhkC , Extract: page 59
  6. Kasana, H.S. (2005), Complex Variables: Theory And Applications (2nd ed.), PHI Learning Pvt. Ltd, p. 14, ISBN 81-203-2641-5, http://books.google.com/books?id=rFhiJqkrALIC , Extract of chapter 1, page 14
"https://ta.wikipedia.org/w/index.php?title=சிக்கலெண்&oldid=1830282" இருந்து மீள்விக்கப்பட்டது