கூட்டல் நேர்மாறு

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்

கணிதத்தில் ஓர் எண்ணின் கூட்டல் நேர்மாறு (additive inverse) என்பது அந்த எண்ணுடன் கூட்டக் கிடைக்கும் விடையானது பூச்சியமாக உள்ளவாறு அமையும் மற்றொரு எண்ணாகும்.

a என்னும் எண்ணின் கூட்டல் நேர்மாறு: -a

இதனை -a = 0 - a எனும் கழித்தலின் சுருக்க வடிவமாகக் (பூச்சியம் விடுபட்ட) கருதலாம்.

எடுத்துக்காட்டுகள்:

  • 7 + (−7) = 0, என்பதால் 7 இன் கூட்டல் நேர்மாறு -7
  • −0.3 + 0.3 = 0 என்பதால் −0.3 இன் கூட்டல் நேர்மாறு 0.3,.

ஓர் எண்ணின் கூட்டல் நேர்மாறு என்பது அவ்வெண்ணின் எதிர் எண்ணாக இருக்கும்.

ஒர் எண்ணின் கூட்டல் நேர்மாறு, கூட்டல் எனும் ஈருறுப்புச் செயலியின் கீழ் அமையும் நேர்மாறு உறுப்பு ஆகும். ஓர் எண்ணின் கூட்டல் நேர்மாறை அந்த எண்ணை −1 ஆல் பெருக்குவதால் அடையலாம். அதாவது,  -a = -1 \times a.

முழு எண்கள், விகிதமுறு எண்கள், மெய்யெண்கள் மற்றும் கலப்பெண்கள் ஆகிய எண்களுக்கெல்லாம் கூட்டல் நேர்மாறு உண்டு. ஏனென்றால் மேற்கூறிய எண்வகைகளின் கணங்களில் அவற்றின் எதிர் எண்களும் அடங்கும். ஆனால் இயல் எண்களின் கூட்டல் நேர்மாறு ஓர் இயல் எண்ணாக இல்லை. இதனால் இயல் எண்களின் கணம் கூட்டல் நேர்மாறு காணும் செயலைப் பொறுத்து அடைவு பெறவில்லை.

கூட்டல் நேர்மாறு தனித்தன்மையதாய் இருக்க வேண்டுமாயின் அக்கூட்டல் செயலி சேர்ப்புப் பண்பு உடையதாய் இருக்க வேண்டும். எடுத்துக்காட்டாக, மெய்யெண்களின் கூட்டல் சேர்ப்புப் பண்பு கொண்டதாகையால் ஒவ்வொரு மெய்யெண்ணுக்கும் ஒரு தனித்த கூட்டல் நேர்மாறு உள்ளது.

மேற்கோள்கள்[தொகு]

"http://ta.wikipedia.org/w/index.php?title=கூட்டல்_நேர்மாறு&oldid=1369139" இருந்து மீள்விக்கப்பட்டது