ஈருறுப்புத் தேற்றம்

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
(ஈருறுப்புத்தேற்றம் இலிருந்து வழிமாற்றப்பட்டது)
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்

அடிப்படை இயற்கணிதத்தில் ஈருறுப்புத் தேற்றம் (Binomial theorem) என்பது, ஓர் ஈருறுப்புக் கோவையின் அடுக்குகளின் இயற்கணித விரிவுகளைத் தருகிறது.

(x + y)n என்பதின் விரிவை, axbyc என்ற வடிவில் உள்ள (n + 1) உறுப்புகளின் கூட்டலாக எழுதலாம். b, c ஆகிய இரண்டும் எதிர்மமற்ற முழு எண்கள், மற்றும் b + c = n ஆகும். ஒவ்வொரு உறுப்பின் குணகமான a ஆனது n, b -ன் மதிப்புகளைப் பொருத்து ஒரு குறிப்பிட்ட மிகை முழுஎண்ணாகும். விரிவிலுள்ள உறுப்புகளில், பூச்சியஅடுக்கு கொண்ட பகுதி இருந்தால் அப்பகுதியை எழுதாமலேயே விட்டு விடலாம். எடுத்துக்காட்டாக,

(x+y)^4 \;=\; x^4 y^0 \,+\, 4 x^3y \,+\, 6 x^2 y^2 \,+\, 4 x y^3 \,+\,x^0 y^4 என்ற விரிவினை,
(x+y)^4 \;=\; x^4 \,+\, 4 x^3y \,+\, 6 x^2 y^2 \,+\, 4 x y^3 \,+\, y^4 என எழுதலாம்.

xbyc என்ற உறுப்பின் குணகமான a -ன் மதிப்பு, \tbinom nb அல்லது \tbinom nc ஆகும். (இரண்டும் சமம்) இது ஈருறுப்புக் குணகம் என அழைக்கப்படுகிறது. \tbinom nb என்பது n உறுப்புகள் கொண்ட கணத்திலிருந்து b உறுப்புகளைத் தேர்ந்தெடுக்கும் சேர்வுகளின் எண்ணிக்கையைக் குறிக்கும். \tbinom nbல் n,b இரண்டிற்கும் வெவ்வேறு மதிப்புகளைத் தரும்போது கிடைக்கும் குணகங்களைக் கொண்டு பாஸ்கலின் முக்கோணத்தை அமைக்கலாம்.

வரலாறு[தொகு]

ஈருறுப்பு குணகங்களும் அவற்றின் முக்கோண அமைப்பும், கி.பி 17ம் நூற்றாண்டின் பிரான்சியக் கணிதவியலாளர் பிலைசு பாஸ்கலின் கண்டுபிடிப்பாகக் கருதப்பட்டாலும், அவருக்கு முந்தைய காலத்துக் கணிதவியலாளர்கள் அவற்றைப் பற்றி அறிந்திருந்தனர். இந்தியக் கணிதவியலாளரான பிங்கலர் கி.மு. 3ம் நூற்றாண்டில் உயர்வரிசை அடுக்குகளுக்கான விரிவினைக் குறிப்பிட்டுள்ளார். கி.மு 4ம் நூற்றாண்டில் கிரேக்கக் கணிதவியலாளர் யூக்ளிடு, இரண்டாம் அடுக்குக்கான ஈருறுப்புத் தேற்றத்தினைப் பற்றிக் குறிப்பிட்டுள்ளார்.[1][2] கி.பி 10ம் நூற்றாண்டில் இந்தியக் கணிதவியலாளர் ஹலயுதரும் பாரசீகக் கணிதவியலாளர் அல் கராஜியும்[3] மற்றும் கி.பி 13ம் நூற்றாண்டில் சீனக் கணிதவியலாளர் யாங் உயியும்,[4] பொதுமைப்படுத்தப்பட்ட ஈருறுப்புத் தேற்றத்தைப் பற்றியும் பாஸ்கலின் முக்கோணம் என்று பின்னர் பெயர்பெற்ற முக்கோண அமைப்பு எண்களைப் பற்றியும் அறிந்திருந்தனர். அல் கராஜி ஈருறுப்புத் தேற்றத்திற்கும் பாஸ்கலின் முக்கோண அமைப்பிற்கும் கணிதத் தொகுத்தறிதல் முறையில் நிறுவல் அளித்துள்ளார்.[3]

தேற்றத்தின் கூற்று[தொகு]

n ஒரு எதிர்மமற்ற முழு எண் எனில்,


\begin{align}
(x+y)^n & = {n \choose 0}x^n y^0 + {n \choose 1}x^{n-1}y^1 + {n \choose 2}x^{n-2}y^2 + {n \choose 3}x^{n-3}y^3 + \cdots \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad(1)\\
& {} \qquad \cdots + {n \choose n-1}x^1 y^{n-1} + {n \choose n}x^0 y^n,
\end{align}

இதில்  \tbinom nk என்பது ஈருறுப்புக் குணகத்தைக் குறிக்கிறது.

கூட்டுத்தொகைக் குறியீட்டைப் பயன்படுத்தி இத்தேற்றத்தினைப் பின்வருமாறு எழுதலாம்.

(x+y)^n = \sum_{k=0}^n {n \choose k}x^{n-k}y^k. =  \sum_{k=0}^n {n \choose k}x^{k}y^{n-k}.

ஈருறுப்புத் தேற்றத்தின் கூற்றானது, ஈருறுப்பு வாய்ப்பாடு அல்லது ஈருறுப்பு முற்றொருமைச் சமன்பாடு எனவும் அழைக்கப்படுகிறது.

ஈருறுப்பு வாய்ப்பாட்டில் x க்குப் பதிலாக 1ம் yக்குப் பதிலாக xம் பிரதியிட்டால் மற்றொரு வகையான, ஒரே மாறியில் அமைந்த ஈருறுப்பு வாய்ப்பாடு பின்வருமாறு கிடைக்கும்:

(1+x)^n = {n \choose 0}x^0 + {n \choose 1}x^1 + {n \choose 2}x^2 +  \cdots + {n \choose {n-1}}x^{n-1} + {n \choose n}x^n,

அல்லது

(1+x)^n = \sum_{k=0}^n {n \choose k}x^k.

எடுத்துக்காட்டுகள்[தொகு]

பாஸ்கலின் முக்கோணம்

(x + y) இன் வர்க்கத்தின் வாய்ப்பாடு ஈருறுப்புத் தேற்றத்திற்கு ஒரு எளிய எடுத்துக்காட்டாகும்.

(x+y)^2 = x^2 + 2xy + y^2.\!

இந்த விரிவிலுள்ள ஈருறுப்புக் குணகங்கள் (1, 2, 1 ) பாஸ்கலின் முக்கோணத்தின் மூன்றாவது நிரையில் உள்ள எண்களாகும். x + y இன் மூன்றுக்கும் மேலான உயர் அடுக்கின் விரிவுகளிலுள்ள குணகங்கள் முறையே பாஸ்கல் முக்கோணத்தின் மூன்றாவது நிரைக்குப் பிந்தைய நிரைகளிலுள்ள எண்களாக அமையும்.


\begin{align}
(x+y)^3 & = x^3 + 3x^2y + 3xy^2 + y^3, \\[8pt]
(x+y)^4 & = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4, \\[8pt]
(x+y)^5 & = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5, \\[8pt]
(x+y)^6 & = x^6 + 6x^5y + 15x^4y^2 + 20x^3y^3 + 15x^2y^4 + 6xy^5 + y^6, \\[8pt]
(x+y)^7 & = x^7 + 7x^6y + 21x^5y^2 + 35x^4y^3 + 35x^3y^4 + 21x^2y^5 + 7xy^6 + y^7.
\end{align}

ஈருறுப்புத் தேற்றத்தை எந்தவொரு ஈருறுப்புக்கோவையின் அடுக்குகளையும் விரித்து எழுதப் பயன்படுத்தலாம். எடுத்துக்காட்டாக,

\begin{align}
(x+2)^3 &= x^3 + 3x^2(2) + 3x(2)^2 + 2^3 \\
&= x^3 + 6x^2 + 12x + 8.\end{align}

கழித்தலைக் கொண்ட ஈருறுப்புக்கோவைக்கும் ஈருறுப்புத் தேற்றத்தைப் பயன்படுத்தலாம். அதற்கு ஈருறுப்புக்கோவையின் இரண்டாவது உறுப்பின் கூட்டல் நேர்மாறைப் பயன்படுத்த வேண்டும். இது விரிவில் ஒன்றுவிட்ட உறுப்புகளின் குறியினை மாற்றும் விளைவிற்கு சமமாக அமையும். எடுத்துக்காட்டாக,

\begin{align}
(x-2)^3 &= x^3 + 3x^2(-2) + 3x(-2)^2 + (-2)^3 \\
&= x^3 - 6x^2 + 12x - 8.\end{align}
\begin{align}
(x-y)^3 &= x^3 + 3x^2(-y) + 3x(-y)^2 + (-y)^3 \\
&= x^3 - 3x^2y + 3xy^2 - y^3.\end{align}

வடிவகணித விளக்கம்[தொகு]

BinomialTheorem.png

ஈருறுப்புக் குணகங்கள்[தொகு]

ஈறுப்புத் தேற்றத்தின் விரிவிலுள்ள உறுப்புகளின் குணகங்கள் ஈருறுப்புக் குணகங்கள் எனப்படும். அவை வழக்கமாக  \tbinom nk என எழுதப்படுகின்றன. அவற்றின் மதிப்புகாணும் வாய்ப்பாடு:

{n \choose k} = \frac{n!}{k!\,(n-k)!},
{n \choose k} = \frac{n (n-1) \cdots (n-k+1)}{k (k-1) \cdots 1} = \prod_{\ell=1}^k \frac{n-\ell+1}{\ell}

இந்த வாய்ப்பாடுகள் பின்னவடிவில் இருந்தாலும் ஈருறுப்புக் குணகங்களின் மதிப்புகள் முழு எண்களாகும். ஈருறுப்பு வாய்பாட்டிலுள்ள குணகங்கள் சமச்சீரானவை.

 \tbinom nk ன் மதிப்பு n உறுப்புகள் கொண்ட ஒரு கணத்திலிருந்து k உறுப்புகளைத் தேர்ந்தெடுக்கும் சேர்வுகளின் எண்ணிக்கைக்குச் சமம்.

பொதுமைப்படுத்துதல்[தொகு]

நியூட்டனின் பொதுமைப்படுத்தப்பட்ட ஈருறுப்புத் தேற்றம்[தொகு]

1665ல் ஐசாக் நியூட்டன் ஈருறுப்புத் தேற்றத்தைக் எதிர்மமற்ற முழுஎண் அடுக்குகளுக்கு மட்டுமில்லாமல் மெய்யெண் அடுக்குகளுக்கும் விரிவுபடுத்தினார். பொதுமைப்படுத்தலால் ஈருறுப்புத் தேற்றத்தின் விரிவிலுள்ள முடிவுறு கூட்டுத்தொகையானது ஒரு முடிவுறாத் தொடராக மாறுகிறது. இதற்காக ஈருறுப்புக் குணகங்களான  \tbinom nk ல் n -க்குப் பதிலாக மாறக்கூடிய (arbitrary) எண், r பயன்படுத்தப்படுகிறது. ஈருறுப்புக்கோவையின் அடுக்கு மெய்யெண் என்பதால்  \tbinom rk இன் மதிப்பை மேலே தரப்பட்டுள்ள தொடர் பெருக்கங்கள் கொண்ட வாய்ப்பாட்டின் மூலம் காணமுடியாது. எனவே வாய்ப்பாட்டிலிருந்து n!, (n-k)! களை நீக்கிவிட்டு n -க்குப்பதில் r -ஐப் பயன்படுத்தி வாய்ப்பாடு பின்வருமாறு தரப்படுகிறது.

{r \choose k}=\frac{r\,(r-1) \cdots (r-k+1)}{k!} =\frac{(r)_k}{k!},

x மற்றும் y மெய்யெண்கள். மேலும் |x| > |y|.[5]

r ஏதேனும் ஒரு மெய்யெண் எனில் ஈருறுப்பு விரிவு:


\begin{align}
(x+y)^r & =\sum_{k=0}^\infty {r \choose k} x^{r-k} y^k \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad(2) \\
& = x^r + r x^{r-1} y + \frac{r(r-1)}{2!} x^{r-2} y^2 + \frac{r(r-1)(r-2)}{3!} x^{r-3} y^3 + \cdots.
\end{align}

r ஒரு குறையிலா முழுஎண்ணாக இருந்தால், k > r எனும்போது ஈருறுப்புக் குணகங்கள் பூச்சியமாகின்றன. எனவே விரிவு (2) ஆனது விரிவு (1) ஆக மாறுகிறது. இதில் அதிகபட்சம் r+1 பூச்சியமில்லா உறுப்புகள் இருக்கும். r இன் ஏனைய மதிப்புகளுக்கு விரிவு (2) முடிவிலா பூச்சியமல்லாத உறுப்புகளைக் கொண்டிருக்கும்.(x, y பூச்சியமில்லாமல் இருந்தால்)

r = −s எனில்,

\frac{1}{(1-x)^s} = \sum_{k=0}^\infty {s+k-1 \choose k} x^k \equiv \sum_{k=0}^\infty {s+k-1 \choose s-1} x^k.

s = 1 எனில் இவ்விரிவு பெருக்குத் தொடரின் வாய்ப்பாடாக அமையும்.

பல்லுறுப்புத் தேற்றம்[தொகு]

இரண்டுக்கும் மேற்பட்ட உறுப்புகளைக் கொண்ட பல்லுறுப்புக்கோவைகளின் அடுக்குகளை விரித்தெழுதுவதற்கும் ஈருறுப்புத் தேற்றத்தைப் பொதுமைப்படுத்தலாம்.

(x_1 + x_2  + \cdots + x_m)^n 
 = \sum_{k_1,k_2,\ldots,k_m} {n \choose k_1, k_2, \ldots, k_m}
  x_1^{k_1} x_2^{k_2} \cdots x_m^{k_m}.

அனைத்து ki ன் கூடுதல்  n ஆக இருக்கும். குணகங்கள்,  \tbinom n{k_1,\cdots,k_n} பல்லுறுப்புக் குணகங்கள் என அழைக்கப்படும். அவற்றின் மதிப்புகளைக் காணும் சூத்திரம்,

 {n \choose k_1, k_2, \ldots, k_m}
 = \frac{n!}{k_1!\, k_2! \cdots k_m!}.

மேற்கோள்கள்[தொகு]

  1. Binomial Theorem
  2. The Story of the Binomial Theorem, by J. L. Coolidge, The American Mathematical Monthly 56:3 (1949), pp. 147–157
  3. 3.0 3.1 O'Connor, John J.; Robertson, Edmund F., "Abu Bekr ibn Muhammad ibn al-Husayn Al-Karaji", MacTutor History of Mathematics archive, புனித ஆண்ட்ரூசு பல்கலைக்கழகம், http://www-history.mcs.st-andrews.ac.uk/Biographies/Al-Karaji.html .
  4. Landau, James A (1999-05-08). "Historia Matematica Mailing List Archive: Re: [HM] Pascal's Triangle" (mailing list email). Archives of Historia Matematica. பார்த்த நாள் 2007-04-13.
  5. This is to guarantee convergence. Depending on r, the series may also converge sometimes when |x| = |y|.
"https://ta.wikipedia.org/w/index.php?title=ஈருறுப்புத்_தேற்றம்&oldid=1926588" இருந்து மீள்விக்கப்பட்டது