போலி (கணிதம்)

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்

கணிதத்தில் போலி (Fallacy) என்பது தவறான நிறுவலைக் குறிக்கும்.[1] ஒரு நிறுவலில் ஏற்படும் தவறுக்கும் போலிக்கும் வித்தியாசம் உள்ளது.

பரிகசிக்கத்தக்க தவறுகள்[தொகு]

தவறான செய்கைவழியின் மூலம் பெறப்பட்ட சரியான முடிவு பரிகசிக்கத்தக்க தவறு எனப்படும்.[2]

\frac{16}{64} = \frac{16\!\!\!/}{6\!\!\!/4}=\frac{1}{4}.

இங்கே \frac{16}{64} = \frac{1}{4} என்பது சரியானதே.[3] ஆனாலும் நடுவில் உள்ள செய்கைவழியில் செய்யப்பட்ட செய்கை தவறாகும்.

சுழியால் வகுத்தல்[தொகு]

அனைத்து எண்களும் ஏனைய அனைத்து எண்களுக்கும் சமன்[தொகு]

பின்வரும் எடுத்துக்காட்டில் சுழியால் வகுத்தலைப் பயன்படுத்தி 2 = 1 எனக் காட்டப்பட்டுள்ளது. இந்தப் போலியிலே மாற்றம் செய்வதன் மூலம் எந்தவோர் எண்ணும் மற்ற எந்தவோர் எண்ணுக்கும் சமன் எனக் காட்டலாம்.

1. aஉம் bஉம் சமனாகும். a \neq 0, b \neq 0

a = b \,

2. இரு பக்கங்களையும் aஆல் பெருக்குக.

a^2 = ab \,

3. b^2ஐக் கழிக்குக.

a^2 - b^2 = ab - b^2 \,

4. இரு பக்கங்களையும் காரணியாக்குக.

(a - b)(a + b) = b(a - b) \,

5. (a - b)ஆல் வகுக்குக.

a + b = b \,

6. a = b என்பதால்,

b + b = b \,

7. bஐயும் bஐயும் கூட்டுக.

2b = b \,

8. சுழியல்லாத bஆல் வகுக்குக.

2 = 1 \,[4]

இங்கே போலி ஐந்தாவது வரியில் உள்ளது. ஐந்தாவது வரியில் சமன்பாடு (a - b)ஆல் வகுக்கப்படுகின்றது. ஆனால், a = b என்பதால் a - b = 0 ஆகும். சுழியால் வகுக்கும்போது கிடைக்கும் பெறுமானத்தைத் தீர்மானிக்க முடியாது என்பதால் மேற்கூறிய நிறுவல் தவறாகும்.

2 \times 0 = 1 \times 0 எனும் சமன்பாட்டில் (இது உண்மையானது!) இரு பக்கங்களிலும் சுழியால் வகுப்பதன் மூலம் 1 = 2 எனக் காட்டுவதும் இவ்வாறே தவறாகும். இதுவும் ஒரு போலியே.

பல பெறுமானங்களை உடைய சார்புகள்[தொகு]

ஓர் எண்ணின் வர்க்கமானது ஒரு திட்டமான பெறுமானத்தைக் கொண்டது. ஆனால், ஒரு நேர் எண்ணின் வர்க்கமூலமானது இரண்டு பெறுமானங்களை எடுக்கக்கூடியது.

(-2)^2 = 4 என்பதால் \sqrt {(-2)^2} = \sqrt 4 என்று -2 = 2 என்று முடிவெடுப்பதும் போலியே.

நுண்கணிதம்[தொகு]

நுண்கணிதத்திலும் தொகையீடுகளினதும் வகைக்கெழுக்களினதும் இயல்புகள் கவனத்தில் கொள்ளப்படாவிட்டால் போலிகள் ஏற்படுவதற்கான வாய்ப்புக்கள் உள்ளன.

அடுக்கும் மூலமும்[தொகு]

நேர் மற்றும் மறை மூலங்கள்[தொகு]

1 = \sqrt{1} = \sqrt{(-1)(-1)} = \sqrt{-1}\sqrt{-1}=i \cdot i = -1

\sqrt{xy} = \sqrt{x}\sqrt{y} என்பது x, y என்பனவற்றில் ஏதேனும் ஓரெண்ணாவது நேர் எண்ணாக இருந்தால் மட்டுமே ஏற்றுக்கொள்ளக்கூடியதாகும். இங்கே அவ்வாறான போலியே நிகழ்ந்துள்ளது.

கேத்திர கணிதம்[தொகு]

இருசமபக்க முக்கோணிப் போலி[தொகு]

நிறுவலுக்கான படம்

பின்வரும் ஏற்றுக்கொள்ளப்பட முடியாத நிறுவலானது எந்தவொரு முக்கோணியுமே இருசமபக்க முக்கோணி தான் எனக் கூறுகின்றது.

தரப்பட்ட △ABCஇல் AB=AC என நிறுவுக.

  1. ∠Aஇன் கோண இருகூறாக்கியை வரைக.
  2. BCஇன் நடுப்புள்ளியை D எனப் பெயரிடுக.
  3. D ஒரு புள்ளியாகவுள்ள BCஇன் செங்குத்து இருசமகூறாக்கியை வரைக.
  4. மேற்கூறிய இரு கோடுகளும் சமாந்தரமெனின், AB = AC; அல்லாவிடின், அவை Oஇல் சந்திக்கும்.
  5. ABஇற்குச் செங்குத்தாக ORஐயும் ACஇற்குச் செங்குத்தாக OQஐயும் வரைக.
  6. நேர்கோடுகள் OBஐயும் OCஐயும் வரைக.
  7. △RAO ≅ △QAO (AO = AO; ∠OAQ ≅ ∠OAR. ஏனெனில், AOஆனது ∠Aஐ இருசமகூறாக்குகின்றது; ∠ARO ≅ ∠AQO. ஏனெனில், அவரை இரண்டும் செங்கோணங்கள்.)
  8. △ODB ≅ △ODC (∠ODB, ∠ODC ஆகிய இரண்டும் செங்கோணங்கள்; OD = OD; BD = CD. ஏனெனில் ODஆனது BCஐ இருசமகூறாக்குகின்றது.)
  9. △ROB ≅ △QOC (RO = QO. ஏனெனில், △RAO ≅ △QAO; BO = CO. ஏனெனில், △ODB ≅ △ODC; ∠ORBஉம் ∠OQCஉம் செங்கோணங்கள்.)
  10. ஆகவே, AR ≅ AQ, RB ≅ QC, AB = AR + RB = AQ + QC = AC

மேற்கூறிய முறையின்படி AB = AC என்றும் AC = BC என்றும் காட்டுவதன் மூலம் அனைத்து முக்கோணிகளுமே சமமானவை எனவும் காட்ட முடியும்.

ஆனாலும் போலி படத்திலேயே உள்ளது. AB ≠ AC ஆக இருப்பின், Oஆனது முக்கோணிக்கு உள்ளே அமைந்திருக்காது. முக்கோணிக்கு வெளியேயே அமைந்திருக்கும். ABஆனது ACஐ விட நீளம் கூடியதாக இருப்பின், Rஆனது ABஇனுள்ளும் Qஆனதும் ACஇற்கு வெளியேயும் (அல்லது மறுதலையாக) அமைந்திருக்கும். துல்லியமான கணித உபகரணங்களின் மூலம் வரையப்பட்ட படம் மேற்கூறிய இரண்டையும் உறுதிப்படுத்தும். இதன் காரணமாக, AB = AR + RB எனவே அமைந்திருக்கும். ஆனால், ACஆனது AQ - QC என்பதற்குச் சமனாக இருக்கும். ஆகவே, அவ்விரு நீளங்களும் சமனல்லவே.

மேற்கோள்கள்[தொகு]

"http://ta.wikipedia.org/w/index.php?title=போலி_(கணிதம்)&oldid=1368562" இருந்து மீள்விக்கப்பட்டது