நெறிமம் (கணிதம்)

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
Jump to navigation Jump to search

கணிதத்தில், நெறிமம் (norm) என்பது, திசையன் வெளியிலமையும் சுழி திசையன் தவிர ஏனைய திசையன் ஒவ்வொன்றோடும் ஒரு நேர்மதிப்புடைய நீளம் அல்லது அளவினை இணைக்கும் சார்பாகும் (சுழி திசையனின் நீளம் சுழியாகும்). அரைநெறிமம் (seminorm), சுழி திசையனோடு சேர்த்துச், சுழியற்ற திசையன்களையும் சுழிநீளத்தோடு இணைக்கும்.

ஒரு திசையன் வெளியில் நெறிமம் வரையறுக்கப்பட்டிருந்தால், அத் திசையன் வெளியானது நெறிமப்படுத்தப்பட்டத் திசையன் வெளி எனப்படும். அதேபோல அரைநெறிமம் வரையறுக்கப்பட்டுள்ள திசையன் வெளியானது அரைநெறிமப்படுத்தப்பட்டத் திசையன் வெளி எனப்படும். ஒரு திசையன்வெளியில் ஒன்றுக்கு மேற்பட்ட நெறிமங்கள் வரையறுக்கப்படலாம்.

வரையறை[தொகு]

F என்ற சிக்கலெண்கள் உட்களத்தின் மீதான திசையன் வெளி V இல் வரையறுக்கப்படும் நெறிமம், பின்வரும் பண்புகளையுடைய சார்பு p : VR ஆகும்.[1]

aF மற்றும் u, vV,

  1. p(av) = |a| p(v),
  2. p(u + v) ≤ p(u) + p(v) (முக்கோணச் சமனிலி)
  3. p(v) = 0 எனில், v ஒரு சுழி திசையன்

முதல் பண்பின்படி,

p(0) = 0 மற்றும் p(-v) = p(v)

எனவே இரண்டாவது பண்பான முக்கோணச் சமனிலிப்படி,

எனவே,
அதாவது நெறிமம் நேர்மதிப்புடையது.

முதலிரு பண்புகள் மட்டும்கொண்ட நெறிமம், அரைநெறிமம் ஆகும்.

திசையன் வெளி V இல் வரையறுக்கப்பட்ட நெறிமங்கள் (அல்லது அரைநெறிமங்கள்) p , q இரண்டும் சமான நெறிமங்களாக இருக்க வேண்டுமானால், V இல் உள்ள அனைத்து திசையன்கள் v க்கும்:

c q(v) ≤ p(v) ≤ C q(v) என்பதை நிறைவு செய்யும் இரு மாறிலிகள் c , C (c > 0) என்ற இருக்க வேண்டும்.

குறியீடு[தொகு]

p : VR என்பது திசையன் வெளி V இல் வரையறுக்கப்படும் நெறிமம்; மேலும் vV எனில், அந் நெறிமத்தின் குறியீடு:

v‖ = p(v).

யூக்ளிடிய தளத்தில் திசையன் v இன் நீளத்தின் குறியீடு: |v|

எடுத்துக்காட்டுகள்[தொகு]

  • அனைத்து நெறிமங்களும் அரைநெறிமங்கள் ஆகும்.
  • p ஒரு எளிய அரைநெறிமம் எனில் p(x) = 0

தனி-மதிப்பு நெறிமம்[தொகு]

மெய்யெண்கள் அல்லது சிக்கலெண்களாலான ஒருபரிமாண திசையன் வெளியில்,

என வரையறுக்கப்படும் தனி மதிப்பு ஒரு நெறிமம் ஆகும்.

யூக்ளிடிய நெறிமம்[தொகு]

n-பரிமாண யூக்ளிடிய தளம் Rn இல் உள்ள ஒரு திசையன் x = (x1, x2, ..., xn) இன் நீளம் (யூக்ளிடிய நெறிமம்) காணும் வாய்ப்பாடு:

பித்தகோரசு தேற்றப்படி, இது ஆதிக்கும் புள்ளி x க்கும் இடையேயுள்ள தொலைவினைத் தருகிறது.

n-பரிமாண சிக்கலெண் தளம் Cn இல் வரையறுக்கப்படும் நெறிமம்:

ஒரு சிக்கலெண்ணின் யூக்ளிடிய நெறிமம்[தொகு]

சிக்கலெண் தளமானது யூக்ளிடிய தளம் R2 ஆகக் கொள்ளப்படுமானால், அச் சிக்கலெண் தளத்திலுள்ள ஒரு சிக்கலெண்ணின் யூக்ளிடிய நெறிமம், அந்த சிக்கலெண்ணின் தனிமதிப்பு (மட்டு மதிப்பு) ஆகும்.

x + iy என்ற சிக்கலெண்ணை யூக்ளிடிய தளத்திலமைந்த ஒரு திசையனாகக் கொள்ளும்போது, அச் சிக்கலெண்ணின் யூக்ளிடிய நெறிமம்:

யூக்ளிடிய நெறிமமானது, யூக்ளிடிய நீளம், L2 தொலைவு, 2 தொலைவு, L2 நெறிமம் அல்லது '2 நெறிமம் எனவும் அழைக்கப்படுகிறது

குறிப்புகள்[தொகு]

  1. Prugovečki 1981, page 20

மேற்கோள்கள்[தொகு]

"https://ta.wikipedia.org/w/index.php?title=நெறிமம்_(கணிதம்)&oldid=2746629" இருந்து மீள்விக்கப்பட்டது