வீச்சு, எதிருரு மற்றும் முன்னுரு

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
f is a function from domain X to codomain Y. The yellow oval inside Y is the image of f.

கணிதத்தில் ஒரு சார்பின் வீச்சு (Range) என்பது அச்சார்பின் எல்லா வெளியீடுகளின் கணமாகும். இதையே சார்பின் எதிருரு (Image) என்றும் சொல்வதுண்டு. எதிருருவின் ஒருவித மறுதலை முன்னுரு. சரியான வரையறைகளைக் கீழே பார்க்கலாம்.

துல்லியமான வரையறை[தொகு]

என்ற சார்பை நோக்குக.

வழியாக A யிலுள்ள ஒவ்வொரு க்கும் அதன் எதிருரு என்பது, இல் இனால் உடன் தனிப்படியாக உறவுண்டாக்கப்பட்ட (associated) ஒரு உறுப்பு. அது என்ற குறியீட்டினால் குறிக்கப்படும்.
என்ற கணத்திற்கு இன் வீச்சு என்று பெயர்.இதையே இன் எதிருரு (Image) என்றும் சொல்வதுண்டு. அதனாலேயே என்ற குறியீடும் பழக்கத்திலிருக்கிறது. எனினும் இந்தக்குறியீட்டை கவனமாகப் பயன்படுத்தவேண்டும். ஏனென்றால் சில பழைய நூல்களில் என்ற குறியீடு இன் இணையாட்களத்தைக் குறித்தது.
இன் எதிருருக்காக ஐயமறப் பயன்படுத்தப்படக்கூடியது என்ற குறியீடு. இன் வழியாக இன் எதிருரு என்றும் சொல்லலாம். குறியீடு . சூழ்நிலையிலிருந்து தெரிந்துகொள்ளப்படின், என்றே எழுதலாம். ஐயமேற்பட வாய்ப்பில்லாத பொழுது, இதையும் எளிதாக என்று எழுதுவதும் உண்டு.

இன் இணையாட்களம் என்ற கணம்.

முன்னுரு[தொகு]

என்று கொள்க.

எதிருருவே ஒரு கோப்பு[தொகு]

) என்பது இலுள்ள ஒவ்வொரு உட்கணம் ஐயும் என்ற ( இன்) ஒரு உட்கணத்திற்கு எடுத்துச்செல்கிறது. இதனால் ) ஐ இனுடைய அடுக்குக்கணத்திலிருந்து (Power Set of A), இன் அடுக்குக்கணத்திற்குப்போகும் ஒரு சார்பு அல்லது கோப்பாகக்கொள்ளலாம். குறியீடுகளில் சொன்னால்,
 : வரையறை:

முன்னுருவின் வரையறை[தொகு]

ஒவ்வொரு க்கும் அதனுடைய முன்னுரு (Pre-image or Inverse image) என்பது

f −1[Y] = {xA | f(x) ∈ Y}

என்று வரையறுக்கப்பட்ட (A இன்) உட்கணம்.

Y = {y} ஓர் ஓருறுப்புக்கணமாக இருக்குமானால் f −1[{y}], ஒரு நார் (fibre/fiber) எனப்படும்.

மேலும், குழப்பத்திற்கு வாய்ப்பு இல்லாவிட்டால்,,  −1[Y] ஐ  −1(Y) என்று எழுதி, f −1 இன் அடுக்குக்கணத்திலிருந்து இன் அடுக்குக்கணத்திற்குப்போகும் ஒரு சார்பாகக் கொள்ளலாம்.  −1நேர்மாறுச் சார்புடன் குழப்பிக் கொள்ளக்கூடாது. ஒரு இருவழிக் கோப்பாக இருந்தால் தான் இரண்டும் ஒன்றாகும்.

எடுத்துக்காட்டுகள்[தொகு]

சார்பு: h(x) = x2. D = ஆட்களம் CD = இணையாட்களம்
  • R R :
f இன் வீச்சு = R+ = = [0, )
{-2,3} இன் எதிருரு: f({-2,3}) = {4,9},
{4,9} இன் முன்னுரு : f −1({4,9}) = {-3,-2,2,3}.
  • R R  :
g இன் வீச்சு, இணையாட்களம், இரண்டுமே R தான்.
  • Z Z : (படிமம் பார்க்க)

இச்சார்புக்கு

  • . வரையறை:
வழியாக, {2,3) இன் எதிருரு :f({2,3}) = {d,c},
இன் வீச்சு :{ }
{} இன் முன்னுரு: f −1({a,c}) = {1,3}.
  • f: R2R : வரையறை:f(x, y) = x2 + y2.
f −1({a})என்ற நார்களை மூன்று விதமாகச் சொல்லவேண்டும்.
a > 0 வாக இருக்குமானால், நார்கள் தொடக்கப்புள்ளியைச்சுற்றி பொதுமையவட்டங்கள்;
a = 0 வாக இருக்குமானால். நார் வெறும் தொடக்கப்புள்ளியைக்கொண்ட ஓருறுப்புக்கணம்;
a < 0 வாக இருக்குமானால், நார்கள் வெற்றுக்கணங்களே.

விளைவுப் பண்புகள்[தொகு]

f: AB ஒரு சார்பு என்றும் X , Y இரண்டும் A இன் உட்கணங்கள் என்றும் M , N இரண்டும் B இன் உட்கணங்கள் என்றும் கொண்டால்,

  • . இங்கு, ஒரு உள்ளிடுகோப்பானால், சமன்பாடு உண்மையாகும்.
  • ஒரு முழுக்கோப்பு .
  • f −1(M ∪ N) = f −1(M) ∪ f −1(N)
  • f −1(M ∩ N) = f −1(M) ∩ f −1(N)
  • f(f −1(M)) ⊆ M
  • f −1(f(X)) ⊇ X
  • MN f −1(M) ⊆ f −1(N)
  • f −1(MC) = (f −1(M))C
  • (f |X)−1(M) = Xf −1(M).

இரண்டு உட்கணங்களின் ஒன்றிப்பு, வெட்டு இவற்றைப்பற்றிய மேற்படி பண்புகளை, உட்கணங்களின் எந்தக் கூட்டத்திற்கும் உண்மை என்று கொள்ளலாம்.

இவற்றையும் பார்க்கவும்[தொகு]