அணுக்கரு ஆற்றல்: திருத்தங்களுக்கு இடையிலான வேறுபாடு

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
உள்ளடக்கம் நீக்கப்பட்டது உள்ளடக்கம் சேர்க்கப்பட்டது
No edit summary
சி Hareesh Sivasubramanianஆல் செய்யப்பட்ட கடைசித் தொகுப்புக்கு முன்நிலையாக்கப்பட்டது
வரிசை 1: வரிசை 1:
{{கூகுள் தமிழாக்கக் கட்டுரை}}
[[File:Susquehanna steam electric station.jpg|thumb|சஸ்க்யூனாவில் உள்ள ஒரு [[கொதிநீர் அணுஉலை]]. இந்த மின்நிலையம் ஒரு நாளில் 64 மில்லியன் யூனிட் மின்சாரத்தை உற்பத்தி செய்கிறது]]
[[File:Susquehanna steam electric station.jpg|thumb|சஸ்க்யூனாவில் உள்ள ஒரு [[கொதிநீர் அணுஉலை]]. இந்த மின்நிலையம் ஒரு நாளில் 64 மில்லியன் யூனிட் மின்சாரத்தை உற்பத்தி செய்கிறது]]
[[File:TaskForce One.jpg|thumb| அணுக்கரு ஆற்றலால் இயங்கும் அமேரிக்க [[கப்பல்]]கள். ஐன்ஸ்டீனின் பொருண்மை - ஆற்றல் சமன்பாட்டு சூத்திரமான ''E&nbsp;=&nbsp;mc<sup>2</sup>'' அக்கப்பலின் மேல்தளத்தில் அமைக்கப்பட்டிருப்பதை காணலாம்.]]
[[File:TaskForce One.jpg|thumb| அணுக்கரு ஆற்றலால் இயங்கும் அமேரிக்க [[கப்பல்]]கள். ஐன்ஸ்டீனின் பொருண்மை - ஆற்றல் சமன்பாட்டு சூத்திரமான ''E&nbsp;=&nbsp;mc<sup>2</sup>'' அக்கப்பலின் மேல்தளத்தில் அமைக்கப்பட்டிருப்பதை காணலாம்.]]

17:13, 3 திசம்பர் 2013 இல் நிலவும் திருத்தம்

படிமம்:Susquehanna steam electric station.jpg
சஸ்க்யூனாவில் உள்ள ஒரு கொதிநீர் அணுஉலை. இந்த மின்நிலையம் ஒரு நாளில் 64 மில்லியன் யூனிட் மின்சாரத்தை உற்பத்தி செய்கிறது
அணுக்கரு ஆற்றலால் இயங்கும் அமேரிக்க கப்பல்கள். ஐன்ஸ்டீனின் பொருண்மை - ஆற்றல் சமன்பாட்டு சூத்திரமான E = mc2 அக்கப்பலின் மேல்தளத்தில் அமைக்கப்பட்டிருப்பதை காணலாம்.


அணுக்கரு ஆற்றல் என்பது அணு(க்களின்) உட்கருவை பிரித்தல் (பிளப்பு) அல்லது ஒன்றுடன் ஒன்று இணைத்தலின் (பிணைவு) மூலமாக வெளியாகிறது. அணுக்கருத் திரளில் இருந்து ஆற்றலுக்கு மாற்றுதல் திரள்-ஆற்றல் சமான சூத்திரம் ΔE  = Δm.c ² உடன் இசைவானதாக இருக்கிறது. இதில் ΔE = ஆற்றல் வெளியீடு, Δm = திறள் குறை மற்றும் c = வெற்றிடத்தில் (பெளதீக மாறிலி) ஒளியின் வேகம் ஆகும். 1896 ஆம் ஆண்டில் பிரஞ்சு இயற்பியல் வல்லுநர் ஹென்றி பெக்குரெல் மூலமாக அணுக்கரு ஆற்றல் முதலில் கண்டறியப்பட்டது. அக்காலத்திற்கு சற்று முன்பு அதாவது 1895 ஆம் ஆண்டில் கண்டறியப்பட்ட எக்ஸ்-ரே தட்டுக்கள் போன்ற யூரேனியத்திற்கு அருகில் உள்ள இருளில் ஒளிப்படத்துக்குரிய தட்டுக்கள் சேமிப்பதைக் கண்டறிந்த போது இதை அவர் கண்டறிந்தார்.[1]

அணுக்கரு வேதியியல் இரசவாதத்தை தங்கமாக மாற்றுவதற்கு ஏதுவாக்கும் வடிவமாக அல்லது ஒரு அணுவில் இருந்து மற்றொரு அணுவாக மாற்றப்படுவதற்குப் (ஆனாலும் பல படிநிலைகள் மூலமாக) பயன்படுத்தப்படலாம்.[2] ரேடியோநியூக்கிளைடு (கதிரியக்க ஐசோடோப்பு) உருவாக்கம் பொதுவாக ஆல்பா துகள்கள், பீட்டா துகள்கள் அல்லது காமா கதிர்கள் ஆகியவற்றுடன் மற்றொரு ஐசோடோப்பின் (அல்லது மிகவும் துல்லியமாக நியூக்கிளைடு) கதிரியக்கத்துடன் தொடர்புடையதாக இருக்கிறது. ஒரு அணுவில் ஒவ்வொரு அணுக்கருத்துகளுக்கும் அதிகமான கட்டமைப்பு ஆற்றலை இரும்பு கொண்டிருக்கிறது. குறை சராசரி கட்டமைப்பு ஆற்றாலின் அணு, உயர் சராசரி கட்டமைப்பு அணுவினுள் மாற்றமடைந்தால் ஆற்றல் வெளியிடப்படுகிறது. ஹைட்ரஜனின் பிணைவு, கனமான அணுக்களை உருவாக்குவதற்கான இணைதல், ஆற்றலை வெளியிடுதல், யுரேனியப் பிளப்புச் செய்வதாக பெரிய அணுக்கருக்களை சிறிய பகுதிகளாக உடைத்தல் ஆகியவற்றைப் பின்வரும் அட்டவணை காட்டுகிறது. ஐசோடோப்புகளுக்கு இடையில் நிலைப்புத்தன்மை மாறுபடுகிறது: ஐசோடோப்பு U-235 என்பது மிகவும் பொதுவான U-238 ஐக் காட்டிலும் மிகவும் குறைந்த நிலைப்புதன்மை கொண்டது.

அணுக்கரு ஆற்றல் பின்வரும் மூன்று வெளிநோக்கு ஆற்றல் (அல்லது வெளிநோக்கு வெப்பம் சார்) செயல்பாடுகளால் வெளியிடப்படுகிறது:

  • கதிரியக்கச் சிதைவு - இதில் கதிரியக்க அணுக்கருச் சிதைவுகளில் நியூட்ரான் அல்லது புரோட்டான், மின்காந்த கதிர்வீச்சு (காமா கதிர்கள்), நியூட்ரினோக்கள் (அல்லது அவற்றில் அனைத்தும்) ஆகிய துகள்கள் உமிழ்வதன் மூலமாகத் தானியங்குகிறது.
  • பிணைவு - இரண்டு அணு உட்கரு ஒன்றுடன் ஒன்று உருகி கனமான அணுக்கருவை உருவாக்குகிறது.
  • பிளப்பு - கனமான அணுக்கருவை இலேசான உட்கருவாக இரண்டாகப் (அல்லது மிகவும் அரிதாக மூன்றாக) பிளத்தல்

வரலாறு

ரேடியம் போன்ற கதிரியக்க தனிமங்கள், ஐன்ஸ்டீனின் பொருண்மை - ஆற்றல் சமன்பாட்டின்படி மகத்தான அளவில் ஆற்றலை வெளிப்படுத்துவது 20 ஆம் நூற்றாண்டின் தொடக்கத்தில் கண்டுபிடிக்கப்பட்ட பிறகு, மின்சார உற்பத்திக்கு அணுசக்தியை பயன்படுத்துவது குறித்த ஆர்வம் அதிகரித்தது. இருப்பினும் சாத்தியமற்றதாக இருந்தது ஏனெனில் தீவிர கதிரியக்க தனிமங்கள் மிகவும் குறைந்த நிலைப்புதன்மை கொண்டவையாக இருந்தன (உயர்ந்த ஆற்றல் வெளியீடு என்பது குறைந்த அரை வாழ்வுடன் தொடர்புடையது). மேலும் எர்னஸ்ட் ரூதர்போர்ட் போன்ற அணு இயற்பியல் அறிஞர்களால் இந்த திட்டம் அசாத்தியமானது என கூறப்பட்டு வந்தது. [3] எனினும் 1930 களின் பிற்பகுதியில் அணு பிளப்பின் கண்டுபிடிப்பால் இந்த நிலைமை மாறிவிட்டது.

இந்தியாவில் அணுமின் நிலையங்கள்

இந்தியாவில் உள்ள அணு மின் நிலையங்கள்
 செயல்பாட்டில் உள்ள அணு உலைகள்
 கட்டுமானத்தில் உள்ள அணு உலைகள்


இந்தியாவில் அணு சக்தியின் மூலம் தயாரிக்கப்படும் மின்சாரமானது வெப்ப, நீர்மின் மற்றும் புதுப்பிக்கத்தக்க மின் ஆதாரங்களுக்குப் பிறகு இந்தியாவின் நான்காவது மிகப்பெரிய மூலமாக உள்ளது. 2010 வரை, இந்தியாவில் உள்ள ஆறு அணுசக்தி நிலையங்களில் செயல்பாட்டில் உள்ள 20 அணு உலைகள் மூலமாக 4,780 மெகாவாட் மின்சாரம் உற்பத்தி செய்யப்படுகிறது.

இந்தியாவின் அணுமின் நிலையங்கள்

  1. நரோரா அணுமின் நிலையம், நரோரா, புலந்த்சகர் மாவட்டம், உத்தரப்பிரதேசம்
  2. ராஜஸ்தான் அணு சக்தி நிலையம், ராவத்பாட்டா, சித்தொர்கர் மாவட்டம், ராஜஸ்தான்
  3. கக்ரபார் அணுமின் நிலையம், கக்ரபார், தாபி மாவட்டம், குஜராத்
  4. தாராப்பூர் அணுசக்தி நிலையம், தாராப்பூர், மகாராஷ்டிரா
  5. கைகா அணுமின் நிலையம், கைகா, உத்தர கன்னடம் மாவட்டம், கர்நாடகா
  6. சென்னை அணுமின் நிலையம், கல்பாக்கம், காஞ்சிபுரம் மாவட்டம், தமிழ் நாடு

இந்தியாவில் கட்டுமான நிலையிலுள்ள அணுமின் நிலையங்கள்

  1. கூடங்குளம் அணுமின் நிலையம், கூடன்குளம், திருநெல்வேலி மாவட்டம், தமிழ் நாடு
  2. ஜெய்தாப்பூர் அணுமின் திட்டம், மதுபன், ரத்னகிரி மாவட்டம், மகாராட்டிரா

அணுஆற்றலின் நன்மைகள்

அணுபிளப்பின் மூலம் ஏற்படும் ஒளியின் வேகத்தை வைத்து மின்சாரம் தயாரிக்கபடுகிறது. மேலும் வெப்ப ஆற்றல் மின் ஆற்றலாக மாற்றபயன்படுகிறது. இதன் மூலம் மிகவிரைவான முறையில் தேவையான மின்சாரம் மிக விரைவில் தயாரிக்கபடுகிறது.

தீமைகள்

பொருளாதாரம்

அணுசக்தி விபத்துக்கள்


சுற்றுச்சூழல் பிரச்சினைகள்

காலநிலை மற்றம்

அணுசக்தி நிலையத்தின் செயல் நிறுத்தல்

2011 ஆம் ஆண்டு ஜப்பானின் ஃபுகுசிமா அணு உலைப்பேரழிவிற்கு பிறகு அணு உலை பாதுகாப்பு குறித்த விழிப்புணர்வு பல நாடுகளில் ஏற்ப்பட்டது. [4] செருமனி தனது அனைத்து அணு உலைகளையும் 2022 ஆம் ஆண்டிற்குள் மூட முடிவெடுத்துள்ளது. இத்தாலி அணு ஆற்றலை தடை செய்துள்ளது.[4]

அணு சக்தியின் எதிர்காலம்

எதிர்காலத்தில் பொருள்கள் மற்றும் எதிர்ப் பொருள்கள் போன்றவற்றை மோதவிட்டு பேராற்றல் உண்டு பண்ணும் எண்ணம் நாசாவிடம் உள்ளது.[5]

இவற்றையும் பார்க்க

மேலும் வாசிக்க

வெளி இணைப்புக்கள்

குறிப்புகள்

  1. "Marie Curie - X-rays and Uranium Rays". aip.org. பார்க்கப்பட்ட நாள் 2006-04-10.
  2. டர்னிங் லீட் இண்டு கோல்ட்
  3. "Moonshine". Atomicarchive.com. பார்க்கப்பட்ட நாள் 2013-06-22.
  4. 4.0 4.1 Sylvia Westall and Fredrik Dahl (June 24, 2011). "IAEA Head Sees Wide Support for Stricter Nuclear Plant Safety". Scientific American.
  5. http://science.nasa.gov/science-news/science-at-nasa/1999/prop12apr99_1/
"https://ta.wikipedia.org/w/index.php?title=அணுக்கரு_ஆற்றல்&oldid=1564591" இலிருந்து மீள்விக்கப்பட்டது