வட்ட வரிசைமாற்றம்

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
Jump to navigation Jump to search

கணிதத்தில் சுழல் வரிசைமாற்றம் அல்லது வட்ட வரிசைமாற்றம் (cyclic permutation அல்லது Circular permutation) என்பது வரிசைமாற்றங்களில் ஒரு சிறப்புவகையாகும். X கணத்தின் மீதான ஒரு வரிசைமாற்றம், X இன் ஒரு உட்கணம் S இன் உறுப்புகளை அவற்றுக்குள்ளாகவே ஒரு சுழலமைப்பில் வரிசைமாற்றப்படுத்தி, S இல் இல்லாத ஏனைய X இன் உறுப்புகளை தமக்குத்தாமே வரிசைமாற்றப்படுத்துமானால் அது வட்ட வரிசைமாற்றம் எனப்படுகிறது.

எடுத்துக்காட்டு: {1, 2, 3, 4} என்ற கணத்தின் ஒரு வரிசைமாற்றம்:

1 → 3, 3 → 2, 2 → 4, 4 → 1 என எடுத்துக்கொண்ட கணத்தின் உறுப்புகள் அனைத்தும் சுழலமைப்பில் மாறுகின்றன. இது ஒரு வட்ட வரிசைமாற்றமாகும்.
  • என்ற வரிசைமாற்றத்தின்கீழ் 1 → 3, 3 → 1 என ஒரு சுழலும்; 2 → 2, 4 → 4 (2, 4 ஆகிய உறுப்புகளும் தமக்குத்தாமே இணைக்கப்படுகின்றன) என அமைகிறது. இவ்வரிசைமாற்றமும் வட்ட வரிசைமாற்றமாகும்.

மாறாக,

என்ற வரிசைமாற்றத்தின்கீழ் 1 → 3, 3 → 1; 2 → 4, 4 → 2 என எடுத்துக்கொண்ட கணத்தின் உறுப்புகள் அனைத்தும் ஒரே சுழலாக அமையாமல் (1 3), (2, 4) என இரு சோடி உறுப்புகளாகப் பிரிந்து இரு சுழல்களாக அமைவதால் இது வட்ட வரிசைமாற்றமாகாது.

ஒரு வரிசைமாற்றத்தின் சுழல் என்பது வட்ட வரிசைமாற்றத்துக்குட்படும் உறுப்புகளின் ஒரு உட்கணம் ஆகும்.

முதல் எடுத்துக்காட்டில் (1 3 2 4) ஒரு சுழலாகும்.
இரண்டாவது எடுத்துக்காட்டில் (1, 3), (2, 4) என இரு சுழல்கள் உள்ளன.

கணம் S ஆனது, சுழலின் சுற்றுப்பாதை (orbit (குலம்)) என அழைக்கப்படும். சேர்ப்பில்லாச் சுற்றுப்பாதைக் கணங்களின் மீதான சுழல்களின் தொகுப்பாக, ஒவ்வொரு வரிசைமாற்றத்தையும் எழுதலாம்; சில சமயங்களில் ஒரு வட்ட வரிசைமாற்றம் முழுவதும் ஒரே சுழலாகவும் அமையும்.

வரையறை[தொகு]

mapping of permutation

ஒரு வரிசைமாற்றத்துக்கு 1 விட அதிக நீளமுள்ள ஒரு சுழல் இருந்தால், இருந்தால் மட்டுமே, அவ்வரிசைமாற்றம் வட்டவரிசை மாற்றமாகும்.[1]

எடுத்துக்காட்டு:

சில கணித அறிஞர்கள் ஒரே சுழலாக அமையும் வரிசை மாற்றங்களை மட்டுமே வட்ட வரிசை மாற்றங்களாகக் கருதுகின்றனர்.[2]

mapping of permutation

எடுத்துக்காட்டு:

X இல் வரையறுக்கப்பட்ட இருவழிக்கோப்பாகவுள்ள வரிசைமாற்றம் வட்ட வரிசைமாற்றமாக அமையவேண்டுமானால், ஒன்றுக்குமேல் உறுப்புகள் கொண்ட சுற்றுப்பாதை அதிகபட்சம் ஒன்றாவது இருக்கவேண்டும்.[3] X முடிவுறுகணமாக இருக்கும்போது (அதன் மிகப்பெரிய சுற்றுப்பாதை S உம் முடிவுறுகணமாகவே இருக்கும்) வட்ட வரிசைமாற்றத்திற்கான வரையறை இவ்விதமாகக் கொள்ளப்படுகிறது.

S இன் ஏதேனுமொரு உறுப்பு மற்றும் என்க. S முடிவுறு கணமாக இருந்தால் எனப் பொருந்துமாறு ஒரு மிகச்சிறிய எண் இருக்கும். இப்போது ஆகும். மேலும் வரிசைமாற்றம் இன் வரையறை:

.

ஆல் மாற்றமடையாத உறுப்புகள் தவிர S இன் ஏனைய உறுப்புகளின் மாற்றத்தை பின்வருமாறு காட்டலாம்:

.

ஒரு வட்ட வரிசைமாற்றத்தை சுழல் குறியீட்டைப் பயன்படுத்திச் சுருக்கமாக எழுதலாம்:

சுழலிலுள்ள உறுப்புகளின் எண்ணிக்கை அச்சுழலின் மிகப்பெரிய சுற்றுப்பாதையின் உறுப்புகளின் எண்ணிக்கையாகும். k நீளமுள்ள சுழலானது k-சுழல் எனப்படும்.

1-சுழலின் சுற்றுப்பாதை வரிசைமாற்றத்தின் நிலைத்த புள்ளி எனப்படும். எனினும் ஒரு வரிசைமாற்றமாகக் கருதும்போது ஒவ்வொரு 1-சுழலும் ஒரு வரிசைமாற்றமாகும்.[4] ஒரு வரிசைமாற்றத்தை சுழல் குறியீட்டில் எழுதும்போது பொதுவாக 1-சுழல்கள் குறிக்காமல் விட்டுவிடப்படுகின்றன.[5]

இடமாற்றங்கள்[தொகு]

ஒரு வரிசைமாற்றத்தில், இரண்டு உறுப்புகள் மட்டுமே கொண்ட சுழல், இடமாற்றல் (transposition) என அழைக்கப்படும்.

எடுத்துக்காட்டு: {1, 2, 3, 4} கணத்தில் 1 → 1, 2 → 4, 3 → 3, 4 → 2 என மாற்றும் வரிசைமாற்றம் ஒரு இடமாற்றம் ஆகும்.

இவ்வரிசைமாற்றத்தின் சுழல் குறியீடு:

இவ்வரிசைமாற்றத்தில் உள்ள சுழல் இரண்டு உறுப்புகள் மட்டுமே கொண்டுள்ளது.

குறிப்புகள்[தொகு]

  1. Bogart, Kenneth P. (1990), Introductory Combinatorics (2nd ), Harcourt, Brace, Jovanovich, p. 486, பன்னாட்டுத் தரப்புத்தக எண்:0-15-541576-X 
  2. Gross, Jonathan L. (2008), Combinatorial Methods with Computer Applications, Chapman & Hall/CRC, p. 29, பன்னாட்டுத் தரப்புத்தக எண்:978-1-58488-743-0 
  3. Fraleigh 1993, p. 103
  4. Rotman 2006, p. 108
  5. Sagan 1991, p. 2

மேற்கோள்கள்[தொகு]

வெளியிணைப்புகள்[தொகு]

"https://ta.wikipedia.org/w/index.php?title=வட்ட_வரிசைமாற்றம்&oldid=2755166" இருந்து மீள்விக்கப்பட்டது