உள்ளடக்கத்துக்குச் செல்

தொகுப்புக்கோடு

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.

தொகுப்புக்கோடு (vinculum) என்பது ஒரு கிடைக்கோடாக வரையப்படும் ஒரு கணிதக் குறியீடாகும். ஒரு கோவையினை ஒரே தொகுப்பாகக் கருதுவதற்காக, அக்கோவையின் மேலோ அல்லது கீழோ இக்கோடு வரையப்படுகிறது. தொகுப்புக் கோட்டிற்குப் பதிலாக, இக்காலத்தில் பெரும்பாலும் வளைவு அடைப்புக்குறி பயன்படுத்தப்படுகிறது[1] இவ்வாறு தொகுப்புக்கோட்டிற்குப் பதில் பயன்படுத்தப்படும் அடைப்புகுறியானது. பதினெட்டாம் நூற்றாண்டுக்கு முந்தைய கணித இலக்கியங்களில் காணப்படவில்லை. தொகுப்புக்கோடு, பெரும்பாலும் மேற்கோடாகவே பயன்படுத்தப்பட்டது. 1484 இல், பிரெஞ்சு கணிதவியலாளர் நிக்கலசு செகொ (Nicolas Chuquet) கீழ்க்கோட்டு முறையைப் பயன்படுத்தியுள்ளார்.[2]Vinculum என்பது பிணைப்பு, தொடர் என்ற பொருள்படும் இலத்தீன் மொழிச் சொல்லாகும்.

பயன்பாடுகள்

[தொகு]
A , B ஐ முனைப்புள்ளிகளாகக் கொண்ட கோட்டுத்துண்டின் குறியீடு:
17 = 0.142857 = 0.1428571428571428571...
  • குறிப்பிட்ட உறுப்புகளை ஒரு தொகுப்பாகக் காட்டுவதற்கு இக்கோடு முக்கியமாகப் பயன்படுகிறது.

இதன்படி, b , c இரண்டையும் முதலில் கூட்டி, கிடைக்கும் விடையை a இலிருந்து கழிக்க வேண்டும். தற்காலப் பயன்பாட்டில், தொகுப்புக்கோட்டிற்குப் பதில் அடைப்புக்குறியைப் பயன்படுத்தி பின்வருமாறு எழுதப்படுகிறது: a − (b + c).

  • விகிதமுறாமூலத்தின் மூலக்குறியீட்டின் ஒரு பகுதியாக, தொகுப்புக்கோடு விகிதமுறாமூலத்தின் அடிமானத்தின் மீது பயன்படுத்தப்படுகிறது.
ஐ அடிமானமாகக் கொண்ட விகிதமுறாமூலத்தில் தொகுப்புக்கோடு:

இவ்வாறு மூலக்குறியீட்டுடன் தொகுப்புக்கோட்டை இணைத்து விகிதமுறாமூலத்தின் அடிமானத்தின் மீது எழுதும் வழக்கத்தை முதன்முதலாக, 1637 இல் டேக்கார்ட் அறிமுகப்படுத்தினார்.[3]

ஒத்த பிறகுறியீடுகள்

[தொகு]

தொகுப்புக்கோட்டைப் போன்று மேற்கோடாகப் பயன்படுத்தப்படும் வேறுசில கணிதக்குறியீடுகளும் உள்ளன:

  • குறியிடப்பட்ட இலக்க முறையில், எதிர்ம இலக்கங்களைக் குறிப்பதற்கு மேற்கோடு இடப்படுகிறது:
  • பூலியன் இயற்கணிதத்தில் கோவைகளின் தொகுப்பின் தருக்க விளைவை எதிர்மறைப்படுத்த வேண்டியதைக் காட்டுவதற்கு மேற்கோடு பயன்படுத்தப்படுகிறது:
  • புள்ளியியலில் ஒரு தரவின் சராசரியைக் குறிக்க மேற்கோடு பயன்படுத்தப்படுகிறது.[4]
  • இயற்பியலில் எதிர்த்துகளைக் குறிக்கப் பயன்படுத்தப்படுகிறது. எடுத்துக்காட்டாக, p -புரோட்டானையும், p-எதிர் புரோட்டானையும் குறிக்கும்.
  • திசையன்களில் என்பது "A" ஐ தொடக்கப்புள்ளியாகவும், "B" ஐ முடிவுப்புள்ளியாகவும் கொண்ட திசையனைக் குறிக்கும். எனினும் சில சமயங்களில் அம்புக்குறியில்லாத மேற்கோடாக, அல்லது கீழ்க்கோடாக இந்தத் திசையனுக்குரிய குறியீடு எழுதப்படுவதும் உண்டு: அல்லது

மேற்கோள்கள்

[தொகு]
  1. Cajori, Florian (2012) [1928], A History of Mathematical Notations, vol. I, Dover, p. 384, பன்னாட்டுத் தரப்புத்தக எண் 978-0-486-67766-8
  2. Cajori 2012, ப. 390–391
  3. Cajori 2012, ப. 208
  4. Hayslett, H. T.; Murphy, P. (1968). Statistics made Simple (2nd ed.). W. H. Allen and Co. p. 18. பன்னாட்டுத் தரப்புத்தக எண் 0-491-00680-2.

வெளியிணைப்புகள்

[தொகு]
"https://ta.wikipedia.org/w/index.php?title=தொகுப்புக்கோடு&oldid=2747506" இலிருந்து மீள்விக்கப்பட்டது