துண்டுவாரி நேரியல் சார்பு
கணிதத்தில், துண்டுவாரி நேரியல் சார்பு (piecewise linear function) என்பது நேர்கோட்டுப் பகுதிகளைக் கொண்டதொரு சார்பாகும்.[1] இச் சார்பு ஒரு துண்டுவாரிச் சார்பு. இதன் உள் ஆட்களங்களில் (துண்டுகளில்) வரையறுக்கப்பட்ட சார்புகள், கேண்முறைச் சார்புகளாக இருக்கும். இச்சார்பு ஒரு தொடர்ச்சியான சார்பாக இருந்தால் அதன் வரைபடம் ஒரு பல்கோண வளைவரையாகும்.
துண்டுவாரி நேரியல் சார்புகள் n-பரிமாண யூக்ளியன் வெளிகள், திசையன் வெளிகள், கேண்முறை வெளிகள் மற்றும் துண்டுவாரி பன்மடிகளில் வரையறுக்கப்படலாம். இங்கு நேரியல் என்பது நேரியல் உருமாற்றத்தை மட்டும் குறிக்காமல் பொதுவாக கேண்முறைச் சார்புகளையும் குறிக்கும். ஒன்றுக்கு மேற்பட்ட பரிமாணங்களில் ஒவ்வொரு துண்டின் ஆட்களமும் பல்கோணமாகவோ அல்லது பல்பரப்பாகவோ இருக்க வேண்டும். அப்பொழுதுதான் இச்சார்பின் வரைபடம் பல்கோண அல்லது பல்பரப்புத் துண்டங்களால் ஆனதாக இருக்கும்.
துண்டுவாரிச் சார்புகளின் முக்கியமான உள்வகைக்களுள் தொடர்ச்சியான துண்டுவாரி நேரியல் சார்புகளும், குவிவு துண்டுவாரி நேரியல் சார்புகளும் அடங்கும்.
பொதுவாக, ஒவ்வொரு n -பரிமாணத் தொடர்ச்சியான துண்டுவாரி நேரியல் சார்பு
- க்கும்,
- என்றவாறு உள்ளது.
ஒரு குவிவு மற்றும் தொடர்ச்சியான துண்டுவாரி நேரியல் சார்பாக இருந்தால்:
- என இருக்கும்.
எடுத்துக்காட்டுகள்[தொகு]
என வரையறுக்கப்படும் சார்பு, நான்கு துண்டுகளைக் கொண்டுள்ளது. (இச்சார்பின் வரைபடம் படத்தில் காட்டப்பட்டுள்ளது. நேரியல் சார்பின் வரைபடம் ஒரு கோடாக இருக்கும் என்பதால் துண்டுவாரி நேரியல் சார்பின் வரைபடம் கோட்டுத்துண்டுகளையும் கதிர்களையும் கொண்டிருக்கும்.
துண்டுவாரி நேரியல் சார்புக்கு பிற எடுத்துக்காட்டுக்கள்:
வளைவரைக்குப் பொருத்துதல்[தொகு]
ஒரு வளைவரையைக் கூறெடுத்தும் (sampling) புள்ளிகளுக்கிடையே நேரியலான இடைச்செருகல் (interpolating) மூலமும் அவ் வளைவரைக்கு தோராயப்படுத்தலாம்.
தரவிற்குப் பொருத்துதல்[தொகு]
பகுதிகள் ஏற்கனவே அறியப்பட்டவையாக இருந்தால், அவற்றின் மீதான நேரியல் உறவாக்கத்தைத் (linear regression) தனிதனியே காணலாம். எனினும் தொடர்ச்சி இதில் பாதுகாக்கப்படுவதில்லை .[2]
பகுதிகள் ஏற்கனவே அறியப்படாதவையாக இருந்தால், உகந்த பிரிக்கும் புள்ளிகளைத் தேர்ந்தெடுப்பதற்கு, வர்க்கங்களின் எச்சக் கூட்டுத்தொகையைப் பயன்படுத்தலாம்.[3][4]
மேற்கோள்கள்[தொகு]
- ↑ Stanley, William D. (2004). Technical Analysis And Applications With Matlab. Cengage Learning. பக். 143. பன்னாட்டுத் தரப்புத்தக எண்:1401864813.
- ↑ Golovchenko, Nikolai. "Least-squares Fit of a Continuous Piecewise Linear Function". 16 செப்டம்பர் 2013 அன்று மூலம் பரணிடப்பட்டது. 6 Dec 2012 அன்று பார்க்கப்பட்டது.
- ↑ http://jap.physiology.org/content/67/1/390.short
- ↑ https://www.ncbi.nlm.nih.gov/pubmed/2759968