தத்தராய ராமச்சந்திர கப்ரேக்கர்

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
Jump to navigation Jump to search
தத்தராய ராமச்சந்திர கப்ரேக்கர்
D. R. Kaprekar.gif
பிறப்பு சனவரி 17, 1905(1905-01-17)
தகானு, மகாராட்டிரம், இந்தியா
இறப்பு 1986 (அகவை 80–81)
தேவ்லாலி, மகாராட்டிரம்
தேசியம் இந்தியர்
பணி பள்ளி ஆசிரியர்
அறியப்படுவது எண்ணியலில் சில கண்டறிதல்கள்

தத்தராய ராமச்சந்திர கப்ரேக்கர் (Dattaraya Ramchandra Kaprekar, 17 சனவரி 1905 - 1986), ஓர் இந்தியக் கணிதவியலாளார். 50 ஆண்டுகளுக்கு மேலாக எண்கள்பால் ஈடுபாடு கொண்டு கணிதத்தில் ஆராய்ச்சி செய்தவர். எண்ணியலில் இவர் பல கண்டுபிடிப்புகளை நிகழ்த்தினார். கப்ரேக்கர் மாறிலி, கப்ரேக்கர் எண் ஆகியவை இவரது கண்டறிதல்களே. முதுகலைப் பட்டம் பெறாதிருந்தும் இவர் எண்ணியலில் பல கட்டுரைகளையும் துண்டுப் பிரசுரங்களையும் வெளியிட்டார்; இவரது பல எண்ணியல் வித்தைகள் விளையாட்டுக் கணிதத்தில் இன்று பயன்படுத்தப் படுகின்றன.

பிறப்பு[தொகு]

கப்ரேக்கர் 1905-ஆம் ஆண்டு ஜனவரி 17 ஆம் நாள் மஹாராட்டிர மாநிலத்தில் மும்பைக்கு அருகிலுள்ள தகானூ எனுமிடத்தில் பிறந்தவர். இராமச்சந்திரதேவ கப்ரேக்கர்-ஜானகிபாய் இணையருக்கு இளைய மகனாகப் பிறந்தார். இவருக்கு 3 சகோதரர்களும் 1 சகோதரியும் உண்டு.

கல்வி[தொகு]

கப்ரேக்கரின் தந்தையார் 1908 -ல் தாணேயிக்கு மாற்றலாகிச் சென்றதால், அங்குள்ள நகராட்சிப் பள்ளியில் ஆரம்பக் கல்வியைத் தொடங்கினார். 8 வயாதன போது, அவர் தன் தாயை இழக்க நேரிட்டது. எனவே தாய்வழி மாமனான கிருஷ்ணாஜி என்பவரின் பராமரிப்பில் வளர்ந்தார். 1915-ல் தன் மாமாவையும் கொள்ளை நோய்க்குப் பலி கொடுக்க நேரிட்டது. எனவே அவர் மீண்டும் தாணேவுகுத் திரும்பி தன் தந்தையாருடன் தங்கி உயர் நிலைப் பள்ளிக் கல்வியைத் தொடர்ந்தார். பள்ளியில் அவர் ஒரு சராசரி மாணவனாக இருந்த போதிலும் எண்கள் உலகில் காணப்படும் வியப்பூட்டும் விந்தைகளைக் கண்டு மனதைப் பறிகொடுத்து சிந்திக்கவும் தொடங்கினார்.

கப்ரேக்கரின் கணக்குப் பேராசிரியரான கணபதி என்பார் சில சமயங்களில் கணக்குப் புதிர்களையும், பெருக்கல்களைப் போடச் சுருக்கு வழிமுறைகளையும் சொல்லிக் கொடுப்பார். இதுவே அவருக்குப் பெரிய தூண்டுகோலாக அமைந்தது எனலாம். இதன் பிறகு எண்களின் பலப்பல சிறப்பியல்புகளைத் தானே முனைந்து கண்டு பிடிக்கத் துவங்கினார்.

பள்ளிப் படிப்பை முடித்தபின், 1923 ஆம் ஆண்டு புனேயில் உள்ள பெர்குசன் கல்லூரியில் இன்டர்மிடியேட் மற்றும் இளங்கலை அறிவியல் பட்டப் படிப்பை முடித்தார். 1929 -ல் பம்பாய் பல்கலை கழகத்திலிருந்து இளங்கலை அறிவியல் பட்டம் பெற்றார். பின்னர் ஆசிரியர் பயிற்சிப் படிப்பை முடித்து தேவ்லாலி என்னும் ஊரிலுள்ள ஒரு பள்ளியில் ஆசிரியர் பணியில் சேர்ந்தார். அங்கு 1930 முதல் 1962 வரை பணி புரிந்தார். 1932 -ல் இந்திரா பாய் என்பவரை மணம் புரிந்து கொண்டார்.

ஆய்வும் பணியும்[தொகு]

ஆசிரியரான கப்ரேக்கர் பள்ளியில் கணிதம், வானியல், சமற்கிருதம் ஆகியவற்றைக் கற்பித்தார். பள்ளியில் ஆசிரியராக இருந்து கொண்டே எண் பற்றிய ஆய்வுகளைத் தொடர்ந்து மேற்கொண்டர். தன் கண்டுபிடிப்புகளை அறிவியல் கழகக் கூட்டங்களிலும், இந்திய கணிதவியல் கழகத்தின் ஆண்டுக் கூட்டங்களிலும், நடைபெறும் கருத்தரங்குகளிலும் வெளிப்படுத்தினார். இந்திய கணிதவியல் கழகத்தில், 1937 -ஆம் ஆண்டில் ஆயுள் உறுப்பினராகச் சேர்ந்தார்.

தன் ஆராய்ச்சிக்காக உதவி வேண்டி, அவர் யாரையும் கேட்டுக் கொண்டதில்லை. பம்பாய் பல்கலைக் கழகம், அவருடைய டெம்லோ எண்கள் தொடர்பான ஆய்வுகளுக்கு 1939 முதல் 1941 வரை நிதி உதவி வழங்கியது. 1960 முதல் 1962 வரை புனே பல்கலைக்கழகம் அவருடைய பல்வேறு ஆராய்ச்சிகளுக்காக உதவித் தொகை வழங்கியது. 1962 முதல் 1967 வரை பல்கலைக் கழக மானியக் குழு உதவித் தொகை வழங்கி கப்ரேக்கரைப் பெருமைப்படுதியது. 1962 -ல் அவர் ஆசிரியர் பணியிலிருந்து ஓய்வு பெற்றார். அதன் பின் பல பல்கலைக் கழகங்களுக்கும், கல்லூரிகளுக்கும் சென்று தன் கண்டுபிடிப்புகளைப் பற்றிச் சொற்பொழிவு நிகழ்த்தினார். மிகப்பல ஆராய்ச்சிக் கட்டுரைகளை இந்திய மற்றும் வெளிநாட்டு இதழ்களில் வெளியிட்டார். ஒரு சில நூல்களையும் இயற்றியுள்ளார். எண்கணிதக் குறிப்புகள் பலவற்றை 'சயின்ஸ் ரிப்போர்ட்டர்', 'சயின்ஸ் டுடே' போன்ற அறிவியல் இதழ்களில் வெளியிட்டார்.

அவருடைய மனைவி, குழந்தைப்பேறு ஏதுமின்றி இறந்து போனார். அதற்குப் பிறகு தன் முழு நேரத்தையும் எண்களைப் பற்றி ஆய்வு செய்வதிலேயே கப்ரேக்கர் செலவிட்டார். விளையாட்டுக் கணக்குகளையும் அதற்குச் சரியான தீர்வுகளை அறியும் முறைகளையும் கண்டறிவதில் தன்னை ஈடுபடுத்திக் கொண்டு துயரங்களை மறந்து மகிழ்வுற்றார்.

வானவியல் ஆர்வம்[தொகு]

கப்ரேக்கரின் தந்தையார் ஒரு நல்ல சோதிடர் ஆதலால் கப்ரேக்கர் சோதிடத்தைப் பற்றியும் தெரிந்திருந்தார். விண்ணில் விண்மீன்களை இனங்கண்டு கொள்வதில் வல்லுநராக இருந்தார். 1937-க்குப் பிறகு தன் கண்டுபிடிப்புகளை அவ்வப்போது ஒரு குறிப்பேட்டில் குறித்து வைத்திருந்தார்.

கப்ரேக்கர் கண்ட எண்ணுலகம்[தொகு]

கப்ரேக்கர் பல புதிய புதிய எண் இனங்களைக் கண்டறிந்து அவற்றை நுட்பமாக ஆய்வு செய்து அவற்றின் பொதுப்பண்புகளையும் சிறப்புப் பண்புகளையும் ஒருசேரக் கண்டறிந்துள்ளார். கப்ரேக்கர் பத்தாம் வகுப்பில் படிக்கும் போது 5-ல் முடியும் எண்களின் இருமடியைப் பற்றி கணக்கு ஆசிரியர் சொல்லிக் கொண்டிருந்தார். (10x + 5) என்பது 5-ல் முடியும் ஈரிலக்க எண் . ஆனால், அதன் இருமடி 100x*(x + 1) + 25 என்றவாறு அமையும் அதனால் இது போன்ற இருமடிகளை நொடிப் பொழுதில் கூறிவிடலாம். அதாவது 35 என்னும் எண்ணை எடுத்துக் கொண்டால், அதில் உள்ள 3 என்னும் எண்ணின் அடுத்த எண்ணாகிய 4 ஓடு பெருக்கி வரும் 12 என்னும் எண்ணின் அருகே 25 ஐ இடலாம் 1225 என்று (12*100 + 25 = 1225)

15*15 = 225
25*25 =625
35*35 =1225
45*45 =2025
55*55 =3025
65*65 =4225
75*75 =5625
85*85 =7225
95*95 =9025

கப்ரேக்கர் சிறுவயதிலேயே 45 மற்றும் 55 ன் இருமடிகள் சற்று மாறுபாடாக இருப்பதைக் கண்டறிந்தார். 45,55 -ன் இருமடிகளை இரு எண் கூறுகளாகப் பிரித்துக் கூட்ட அதே எண் கிடைக்கின்றது.

452 = 2025 ; 20+25 = 45
552 = 3025 ; 30+25 = 55

கப்ரேக்கர் பின்னாளில் இது போல நூற்றுக்கணக்கான எண்களை இனங்கண்டறிந்தார். இவற்றை இன்றைக்கு கப்ரேக்கர் எண்கள் என அழைக்கின்றார்கள். 5-ல் மட்டுமன்றி பிற எண்களுடன் முடியும் எண்களின் இருமடியைச் சட்டெனக் கண்டறிய பல எளிய சுருக்கு வழிகளையும் இவர் கண்டறிந்து வெளியிட்டுள்ளார். இது "Ten cuts in Calculation" என்ற தலைப்பில் ஒரு நூலாக வெளி வந்துள்ளது.

காரணிகளின் பெருக்குத்தொகை[தொகு]

  • ஓர் எண்ணை இரு காரணிகளின் பெருக்குத் தொகையாக இரு வேறு விதமாகக் காட்டுவதில் ஓர் ஒழுங்கு முறை காணப்படுவதை கப்ரேக்கர் சுட்டிக்காட்டியுள்ளார்.

சான்று:

777*55 = 555*77
555555 * 444 = 444444 *555
14141414 * 2727 = 27272727* 1414

ஒழுங்குமுறையில் மாற்றிப் பெருக்குதல்[தொகு]

இரு எண்களை ஓர் ஒழுங்கு முறையில் மாற்றிப் பெருக்கும் போது, அந்த மாற்றம் பெருக்குத்தொகையிலும் காணப்படுவதை கப்ரேக்கர் புலப்படுத்திக் காட்டியுள்ளார். சான்று:

91*819 =74529
9901*980199 =9704950299
999001*998001999 =997004995002999

91 லும் 819 லும் 9 ஐயும் சுழியையும் (பூச்சியம்), மாறி மாறி உட்புகுத்த அதே போல் பெருக்குத் தொகையான 74529 லும் 9ம் சுழியும் மாறி மாறி உட்புகுந்து வருவது இங்கு நோக்கத்தக்கதாகும்.

அதாவது கீழ்கண்டவாறு:
# 91 * 819 = 74529
# 9/9/0/1 * 9/8/0/1/9/9 = 9704950299 (ஒன்று விட்டு ஒன்று)
# 9/99/0/01 * 9/ 98/ 0 / 01 / 9 /99 = 9/97/0/04/9/95/0/02/9/99 (இரண்டிரண்டாக)
# 9/999/0/001 * 9/998/0/001/9/999 = 9/997/0/004/9/995/0/002/9/999 (மூன்று மூன்றாக)
# 9/9999/0/0001 * 9/9998/0/0001/9/9999 = 9/9997/0/0004/9/9995/0/0002/9/9999 (நான்கு நான்காக )

இவ்வாறே சேர்த்துக் கொள்ள வேண்டும். பெருக்குத் தொகையிலும் இதே மாதிரியான ஒழுங்கு முறையில் எண்கள் அமைவதைக் காணலாம்.

கப்ரேக்கர் எண்கள்[தொகு]

கப்ரேக்கர் தனக்குத் தானே எண்களின் இருமடி, மும்மடிகளின் பட்டியலை விரிவாகத் தயாரித்து வைத்திருந்தார். இதன் மூலம் அவர் எண்களின் புதிய இனங்களைப் பற்றி விரிவாகத் தெரிவிக்க முடிந்தது. குறிப்பாக

போன்றவற்றைச் சொல்லலாம்.

கப்ரேக்கர் மாறிலி, 6174[தொகு]

கப்ரேக்கர் மாறிலி என்பது 6174 என்னும் எண்ணைக் குறிக்கும். இதனை இவர் 1949 இல் கண்டுபிடித்தார்.[1] . இந்த எண்ணின் சிறப்பு என்னவென்று அறிய கீழ்க்காணுமாறு செய்தல் வேண்டும். வெவ்வேறான இலக்கங்கள் கொண்ட ஒரு நான்கு இலக்க எண்ணை எடுத்துக்கொள்ள வேண்டும். முதலில் அந்த நான்கு இலக்கங்களைக் கொண்டு அமையக்கூடிய மிகப் பெரிய நான்கு இலக்க எண்ணை உருவாக்க வேண்டும். பிறகு அதே நான்கு இலக்கங்களைக் கொண்டு அமையக்கூடிய மிகச் சிறிய நான்கு இலக்க எண்ணை உருவாக்க வேண்டும். இப்பொழுது முதலில் உருவாக்கிய பெரிய எண்ணிலிருந்து அடுத்து உருவாக்கிய சிறிய எண்ணைக் கழித்து வரும் எண்ணைக் குறித்துக் கொள்ள வேண்டும். இப்படிக் கிடைத்த எண்ணில் உள்ள இலக்கங்களைப் பயன்படுத்தி மீண்டும் முன்போலவே அவற்றால் அமையக்கூடிய மிகப்பெரிய எண், மிகச்சிறிய எண் இரண்டையும் உருவாக்கி அவற்றின் வித்தியாசத்தைக் கண்டறிய வேண்டும். இப்படியே செய்துகொண்டே போனால் கடைசியில் 6174 என்னும் மாறிலி கிட்டும்.

எடுத்துக்காட்டாக 1234 என்ற நான்கிலக்க எண்ணைக் கொண்டு தொடங்கினால்:

இதிலிலுள்ள இலக்கங்கள்: 1, 2, 3, 4
இவற்றைக்கொண்டு அமையும் மிகப்பெரிய எண்: 4321
இவற்றைக்கொண்டு அமையும் மிகச்சிறிய எண்: 1234
கழிக்க:
4321 − 1234 = 3087,

முன்பு செய்ததுபோல் இருமுறை தொடர

8730 − 0378 = 8352,
8532 − 2358 = 6174.

இந்நிலையில் மேலும் இதனைத் தொடர்ந்தால் அதே எண்ணே கிட்டும் (7641 − 1467 = 6174).

எந்தவொரு நான்கு இலக்க எண்ணை எடுத்துக்கொண்டாலும் மிகப்பெரும்பாலும் 7 முறை இப்படிச் செய்தாலே விடை கிட்டிவிடும்.

இறுதிக் காலம்[தொகு]

எண்களின் உலகத்தில் பல புதிய கண்டுபிடிப்புகளைக் கண்ட கப்ரேக்கர் சிறுவர்களுக்கு விளையட்டுக் கணக்குளையும், புதிர்களையும் போட்டு அவர்களுக்கு கணக்கில் ஆர்வம் ஏற்படச் செய்தார். கப்ரேக்கர் 1988 -ல் இயற்கை எய்தினார்.

உசாத்துணை[தொகு]

டாக்டர் மெ. மெய்யப்பன் .'விளையாட்டுக் கணக்குகள்' அறிவுப் பதிப்பகம். ஜூன்,2003.

  1. Kaprekar, D. R. (1949). "Another Solitaire Game". Scripta Mathematica 15: 244–245.