இயற்கணிதக் கோவை

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
Jump to navigation Jump to search

கணிதத்தில் இயற்கணிதக் கோவை (algebraic expression) என்பது, முழுஎண் மாறிலிகளையும், மாறிகளையும், இயற்கணிதச் செயல்கள் (கூட்டல், கழித்தல், பெருக்கல், வகுத்தல், விகிதமுறு எண்ணை அடுக்காகக் கொண்ட அடுக்கேற்றம் ஆகிய கணிதச் செயல்களையும் கொண்டு கட்டமைக்கப்படும் கோவையாகும்.[1]

எடுத்துக்காட்டுகள்:

  • ஒரு இயற்கணிதக் கோவை.
  • வர்க்கமூலம் காண்பது அடுக்குக்கு உயர்த்துவதற்குச் சமம் என்பதால்,
என்பதும் ஒரு இயற்கணிதக் கோவையாகும்.
  • நேரியல் கோவை: .
  • இருபடிக் கோவை: .

முறையாக வரையறுக்கப்பட்ட விதிகளுக்குப்படாமல், இணைக்கப்பட்டவை இயற்கணிதக் கோவைகளாகா. எடுத்துக்காட்டாக,

-இது ஒரு கோவை அல்ல. பொருளில்லாத ஒரு கலவை மட்டுமே.[2]

π, e போன்ற விஞ்சிய எண்கள் இயற்கணிதக் கோவைகள் அல்ல.

ஒரு விகிதமுறு கோவை என்பது, கூட்டல், பெருக்கல் செயல்களின் பரிமாற்றுத்தன்மை, சேர்ப்புப் பண்பு, பங்கீட்டுப் பண்புகளையும், பின்னங்களின் மீதான செயல்களுக்கான விதிகளையும் பயன்படுத்தி, ஒரு விகிதமுறு சார்பாக மாற்றியமைக்கப்படக் கூடிய கோவையாகும். அதாவது மாறிலிகளையும், மாறிகளையும், எண்கணிதத்தின் நான்கு செயல்களையும் மட்டும் கொண்டு அமைக்கப்படும் கோவை விகிதமுறு கோவையாகும்.

எடுத்துக்காட்டு:

  • ஒரு விகிதமுறு கோவை.
  • ஒரு விகிதமுறு கோவை.
  • ஆனால், ஒரு விகிதமுறு கோவை அல்ல.

ஒரு விகிதமுறு சமன்பாடு என்பது, வடிவிலமைந்த இரு விகிதமுறு சார்புகளைச் சமப்படுத்தும் கோவை ஆகும். பின்னங்களுக்கான விதிமுறைகளையே இக்கோவைகளும் பின்பற்றுகின்றன. குறுக்குப் பெருக்கலின் மூலம் இச்சமன்பாடுகளின் தீர்வுகள் காணப்படும். பூச்சியத்தால் வகுத்தல் வரையறுக்கப்படாததால், அத்தீர்வுகளுள் பூச்சியத்தால் வகுத்தலைக் கொடுக்கும் தீர்வுகள் விட்டுவிடப்படுகின்றன.

சொல்லியல்[தொகு]

ஒரு கோவையின் பாகங்களை விளக்குவதற்கு இயற்கணிதம் தனக்கெனத் தனிப்பட்ட சொல்லியலைக் கொண்டுள்ளது:

Algebraic equation notation.svg
1 – அடுக்கு, 2 – கெழு அல்லது குணகம், 3 – உறுப்பு, 4 – செயல், 5 – மாறிலி, - மாறிகள்

வழமைகள்[தொகு]

மாறிகள்[தொகு]

வழக்கமாக, ஆங்கில அகரவரிசையின் தொடக்க எழுத்துக்கள் (எகா: ) மாறிலிகளைக் குறிக்கவும், இறுதியிலமையும் எழுத்துக்கள் ( ) மாறிகளைக் குறிக்கவும் பயன்படுத்தப்படுகின்றன.[3] மாறி, மாறிலிகளைக் குறிக்கும் ஆங்கில எழுத்துக்கள் சாய்ந்த எழுத்துக்களாக எழுதப்படுகின்றன.[4]

அடுக்குகள்[தொகு]

ஒரு இயற்கணிதக் கோவையின் அதிஉயர் அடுக்கு கொண்ட உறுப்பு இடதுபுறத்தில் அக் கோவையின் தொடக்க உறுப்பாக எழுதப்படுவது வழக்கமாக உள்ளது. அதைத் தொடர்ந்து அடுக்குகள் இறங்கு வரிசையில் அமையும் வண்ணம் அக்கோவையின் உறுப்புகள் எழுதப்படுகின்றன. எடுத்துக்காட்டாக, உறுப்புக்கு இடப்புறத்தில் உறுப்பு அமையும்.

ஒரு இயற்கணிதக் கோவையின் ஒரு உறுப்பிலுள்ள மாறியின் அடுக்கு 1 ஆக அமைந்தால், அந்த அடுக்கு எழுதப்படுவதில்லை. எடுத்துக்காட்டாக, என்பது, என எழுதப்படும்.[5] ஒரு இயற்கணிதக் கோவையின் ஒரு உறுப்பிலுள்ள மாறியின் அடுக்கு பூச்சியமெனில் அதன் மதிப்பு எப்பொழுதுமே 1 ஆகும். எடுத்துக்காட்டாக, [6]

கெழுக்கள்[தொகு]

ஒரு உறுப்பின் கெழு 1 எனில், அக்கெழு எழுதாமலேயே விட்டுவிடப்படுகிறது. எடுத்துக்காட்டாக, என்பது என எழுதப்படும்.[7]

பல்லுறுப்புக்கோவைகளின் மூலங்களில்[தொகு]

n < 5 எனில், n படியிலமைந்த பல்லுறுக்கோவையின் மூலங்கள் அல்லது n படியிலமைந்த இயற்கணிதச் சமன்பாட்டின் தீர்வுகளை இயற்கணிதக் கோவைகளாகக் காணமுடியும்.

எடுத்துக்காட்டு: இருபடிச் சமன்பாட்டின்]] தீர்வுகள்:

என்ற இருபடிச் சமன்பாட்டின் தீர்வுகள்

இதேபோல முப்படிச் சமன்பாடு, நான்காம்படிச் சமன்பாடுகளின் தீர்வுகளும் இயற்கணிதக் கோவைகளாக இருக்கும். இவ்வாறு இயற்கணிதக் கோவைகளாக அமையும் தீர்வுகள் இயற்கணிதத் தீர்வுகள் எனப்படும். ஏபெல்-ரூஃப்னி தேற்றத்தின்படி, n 5 ஆகக் கொண்ட எல்லாச் சமன்பாடுகளும் இயற்கணிதத் தீர்வுகள் கொண்டிருக்காது.

இயற்கணிதக்கோவைகள்-எதிர்-பிற கணிதக்கோவைகள்[தொகு]

பல்வகையான கணிதக் கோவைகளுடன் இயற்கணிதக் கோவைகளின் ஒப்பீட்டினைக் கீழுள்ள அட்டவணை காட்டுகிறது.

குறிப்புகள்[தொகு]

  1. Morris, Christopher G. (1992). Academic Press dictionary of science and technology. பக். 74. http://books.google.co.uk/books?id=nauWlPTBcjIC&lpg=PA74&dq=algebraic%20expression%20over%20a%20field&pg=PA74#v=onepage&q&f=false. 
  2. Introduction to Algebra
  3. William L. Hosch (editor), The Britannica Guide to Algebra and Trigonometry, Britannica Educational Publishing, The Rosen Publishing Group, 2010, ISBN 1615302190, 9781615302192, page 71
  4. James E. Gentle, Numerical Linear Algebra for Applications in Statistics, Publisher: Springer, 1998, ISBN 0387985425, 9780387985428, 221 pages, [James E. Gentle page 183]
  5. John C. Peterson, Technical Mathematics With Calculus, Publisher Cengage Learning, 2003, ISBN 0766861899, 9780766861893, 1613 pages, page 31
  6. Jerome E. Kaufmann, Karen L. Schwitters, Algebra for College Students, Publisher Cengage Learning, 2010, ISBN 0538733543, 9780538733540, 803 pages, page 222
  7. David Alan Herzog, Teach Yourself Visually Algebra, Publisher John Wiley & Sons, 2008, ISBN 0470185597, 9780470185599, 304 pages, page 72

மேற்கோள்கள்[தொகு]

வெளியிணைப்புகள்[தொகு]

"https://ta.wikipedia.org/w/index.php?title=இயற்கணிதக்_கோவை&oldid=2747500" இருந்து மீள்விக்கப்பட்டது