இணைகர விதி

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
Jump to navigation Jump to search
இணைகரத்தின் பக்கங்கள் நீல வண்ணத்திலும் மூலைவிட்டங்கள் சிவப்பு வண்ணத்திலும் காட்டப்பட்டுள்ள ஒரு இணைகரத்தின் படம்.

கணிதத்தின் மிக எளிய இணைகர விதி (parallelogram law) (also called the parallelogram identity) அடிப்படை வடிவவியலில் அமைந்துள்ளது. ஒரு இணைகரத்தின் நான்கு பக்க நீளங்களின் வர்க்கங்களின் கூட்டுத்தொகை அவ்விணைகரத்தின் இரு மூலைவிட்ட நீளங்களின் கூட்டுத்தொகைக்குச் சமமானதென இவ்விதி கூறுகிறது. AB, BC, CD, DA இணைகரத்தின் நான்கு பக்கங்கள்.யூக்ளீடிய வடிவவியலில் இணைகரத்தின் எதிரெதிர் பக்க நீளங்கள் சமமென்பதால், AB = CD , BC = DA. எனவே இணைகர விதியின் கூற்று:

இணைகரம் ஒரு செவ்வகமாக இருந்தால் மூலைவிட்டங்களின் நீளங்கள் சமம். அதாவது, AC = BD. இதனால் செவ்வகத்தில் இவ்விதி பித்தேகோரசு தேற்றமாக அமைகிறது:

பக்கங்களெதுவும் சமமில்லாத பொதுவான நாற்கரத்திற்கு,

இதில் x ஆனது நாற்கரத்தின் மூலைவிட்டங்களின் நடுப்புள்ளிகளை இணைக்கும் கோட்டுத்துண்டின் நீளம்.

ஒரு இணைகரத்தின் மூலைவிட்டங்கள் ஒன்றையொன்று இருசம பாகங்களாக வெட்டும் என்பதால், இணைகரத்தில் x = 0 ஆகவும் எதிரெதிர் இணைபக்க நீளங்கள் சமமாகவும் இருக்குமென்பதால் நாற்கரத்திற்கான மேலுள்ள முடிவானது இணைகர விதியாகச் சுருங்கும்.

நிறுவல்[தொகு]

Color parallelogram.svg

வலப்பக்கப் படத்திலுள்ள இணைகரத்தில், AD=BC=a, AB=DC=b, ∠BAD = α என எடுத்துக்கொள்ளப்படுகிறது. முக்கோணம் ΔBAD இல் கோசைன் விதியைப் பயன்படுத்தக் கிடைப்பது:

 

 

 

 

()

ஒரு இணைகரத்தில் அடுத்துள்ள கோணங்கள் [[மிகைநிரப்பு கோணங்களாக இருக்குமென்பதால் ∠ADC = 180°-α. மேலும் the law of cosines in triangle முக்கோணம் ΔADC இல் கோசைன் விதியைப் பயன்படுத்த:

முக்கோணவியல் முற்றொருமையான என்பதையும் பயன்படுத்த:

 

 

 

 

(∗∗)

இரண்டையும் கூட்டக் கிடைப்பது:

மேற்கோள்கள்[தொகு]

வெளியிணைப்புகள்[தொகு]

"https://ta.wikipedia.org/w/index.php?title=இணைகர_விதி&oldid=3111445" இருந்து மீள்விக்கப்பட்டது