முழு எண்

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
(முழுவெண் இலிருந்து வழிமாற்றப்பட்டது)
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்
முழுஎண்கள் கணம் இக்குறியீட்டினால் குறிக்கப்படும்

கணிதத்தில் முழு எண்கள் அல்லது நிறை எண்கள் (இலத்தீன்: integer அதாவது முழுமை) எனப்படுவன நேர்ம இயற்கை எண்களையும் (1, 2, 3, …), அவற்றின் எதிர்மங்களையும் (−1, −2, −3, ...) மற்றும் சுழி இலக்கத்தையும் குறிப்பனவாகும். முழு எண்களைப் பின்னப் பகுதியற்ற எண்கள் எனவும் கொள்ளலாம். எடுத்துக்காட்டாக 13, 9, and −1204 ஆகியவை முழு எண்கள்; 1.25, 5½, \sqrt2ஆகியவை முழு எண்கள் அல்ல.

முழுஎண்களின் கணம் "Z" அல்லது \mathbb{Z} என்ற குறியீடுகளால் குறிக்கப்படுகிறது[1][2]. விகிதமுறு எண்களின் கணத்திற்கும் மெய்யெண்களின் கணத்திற்கும் முழுஎண்களின் கணம் உட்கணமாக அமைகிறது. மேலும் இக் கணம், எண்ணுறு முடிவிலி கணமாகும்.

வரைபடத்தில்[தொகு]

முழுஎண் கோட்டின் வரைபடம். இதில் எதிரிலா முழுஎண்கள் பர்ப்பிள் நிறத்திலும், எதிர் முழுஎண்கள் சிவப்பு நிறத்திலும் காட்டப்பட்டுள்ளன.

முடிவிலா நீளமுள்ள ஒரு எண்கோட்டின்மீது சம இடைவெளியில் அமையும் தனித்த புள்ளிகளாக முழுஎண்களைக் குறிக்கலாம். முழுஎண் கோட்டில், எதிரிலா முழுஎண்கள் சுழிக்கு வலப்புறமும், எதிர் முழுஎண்கள் சுழிக்கு இடப்புறத்திலும் குறிக்கப்படுகின்றன.

இயற்கணிதப் பண்புகள்[தொகு]

அடைவுப் பண்பு[தொகு]

இயல் எண்களின் கணத்தைப் போன்றே, முழுஎண்களின் கணமும் (Z) கூட்டல் மற்றும் பெருக்கல் ஆகிய இரு ஈருறுப்புச் செயலிகளைப் பொறுத்து அடைவு பெற்றது ஆகும். அதாவது இரு முழுஎண்களின் கூடுதல் மற்றும் பெருக்கற்பலன் இரண்டும் முழுஎண்களாகவே இருக்கும்.  0 மற்றும் எதிர் இயல் எண்கள் உள்ளதால் Z இல் உள்ளதால் இக் கணம் கழித்தலைப் பொறுத்தும் அடைவு பெற்றுள்ளது.

ஆனால் இரு முழுஎண்களை ஒன்றை மற்றொன்றால் வகுக்கும்போது கிடைக்கும் எண் முழுஎண்ணாக இருக்கவேண்டியதில்லை என்பதால் வகுத்தலைப் பொறுத்து முழுஎண்கள் கணம் அடைவு பெறவில்லை. இதேபோல, அடுக்கேற்றத்தைப் பொறுத்தும் முழுஎண்கள் கணம் அடைவுபெறவில்லை.

கூட்டல், பெருக்கலைப் பொறுத்த பண்புகளின் அட்டவணை[தொகு]

a, b மற்றும் c ஆகிய மூன்று முழுஎண்களுக்குக் கூட்டல் மற்றும் பெருக்கல் செயல்களைப் பொறுத்த அடிப்படைப் பண்புகள் கீழுள்ள அட்டவணையில் தரப்பட்டுள்ளன:

கூட்டல் மற்றும் பெருக்கலின் முழுஎண்கள் மீதான பண்புகள்
கூட்டல் பெருக்கல்
அடைவுப் பண்பு a + b ஒரு முழுஎண் a × b ஒரு முழுஎண்
சேர்ப்புப் பண்பு a + (b + c) = (a + b) + c a × (b × c) = (a × b) × c
பரிமாற்றுப் பண்பு a + b = b + a a × b = b × a
முற்றொருமை உறுப்பு இருத்தல் a + 0 = a a × 1 = a
நேர்மாறு உறுப்பு இருத்தல் a + (−a) = 0 நேர்மாறு உறுப்பு கிடையாது
பங்கீட்டுப் பண்பு a × (b + c) = (a × b) + (a × c) and (a + b) × c = (a × c) + (b × c)
சுழி பகுப்பான் a × b = 0 எனில் a = 0 அல்லது b = 0 (அல்லது இரண்டும்)

கூட்டலைப் பொறுத்து[தொகு]

ஏபெல் குலம்[தொகு]

மேலே தரப்பட்டுள்ள அட்டவணயின் படி ஈருறுப்புச் செயலியான கூட்டலைப் பொறுத்து, Z ஆனது அடைவுப் பண்பு, சேர்ப்புப் பண்பு, முற்றொருமை உறுப்பு இருத்தல், நேர்மாறு உறுப்பு இருத்தல், பரிமாற்றுப் பண்பு ஆகிய ஐந்து பண்புகளையும் நிறைவு செய்கிறது. எனவே (Z, +) ஒரு ஏபெல் குலமாகிறது.

சுழற் குலம்[தொகு]

சுழியற்ற ஒவ்வொரு முழுஎண்ணையும் 1 + 1 + ⋯ + 1 அல்லது (−1) + (−1) + ⋯ + (−1) என்ற முடிவுறுக் கூட்டல் வடிவில் எழுதமுடியும் என்பதால் (Z, +) ஒரு சுழற் குலமாகவும் உள்ளது. உண்மையில் முடிவிலி சுழற்குலமாக அமைவது (Z, +) மட்டுமே. ஏனென்றால் வேறு ஏதாவது முடிவிலி சுழற்குலங்கள் இருந்தாலும், அவை (Z, +) உடன் குலச் சமஅமைவியம் கொண்டவையாய் அமையும்.

பெருக்கலைப் பொறுத்து[தொகு]

குலம்[தொகு]
  • குலமாவதற்குத் தேவையான நான்கு பண்புகளில் முதல் மூன்று பண்புகளைக் கொண்டிருந்தாலும், நான்காவது பண்பான பெருக்கலுக்கான பொறுத்த நேர்மாறு உறுப்புகள் இல்லாமையால் (Z, x) குலம் ஆகாது.
  • பெருக்கலைப் பொறுத்து அடைவுப் பண்பு, சேர்ப்புப் பண்பு, முற்றொருமை உறுப்பு இருத்தல் ஆகிய மூன்று பண்புகளையும் நிறைவு செய்வதால், (Z, x) ஒரு ஒற்றைக்குலம் ஆகிறது. மேலும் இம் மூன்று பண்புகளுடன் பெருக்கலைப் பொறுத்த பரிமாற்றுப் பண்பும் நிறைவு செய்யப்படுவதால் (Z, x) ஒரு பரிமாற்று ஒற்றைக்குலம் ஆகும்.

வளையம், களம்[தொகு]

  • (Z, +) ஏபெல் குலமாகவும், (Z, x) ஒற்றைக்குலமாகவும் மேலும் கூட்டல் மற்றும் பெருக்கலைப் பொறுத்த பங்கீட்டுப் பண்பும் ( a*(b + c) = a*b + a*c, (a + b)*c = a*c + b*c)

நிறைவு பெறுவதால் முழுஎண்களின் கணம் (Z, +, x) ஒரு பரிமாற்று வளையம் ஆகும்.

  • வளையமாக இருந்தபோதும் பெருக்கலைப் பொறுத்த நேர்மாறு உறுப்புகள் இல்லாமையால் முழுஎண்களின் கணம் ஒரு களமாக முடியாது.

முழு வரிசைப் பண்பு[தொகு]

முழுஎண்கள் கணம், மேல்வரம்பும் கீழ்வரம்புமற்ற முழு வரிசையுடைய கணமாகும். Z இன் வரிசைப்படுத்தப்பட்ட வடிவம்:

பாகுபடுத்தல் தோல்வி (தொகுத்தல் (லெக்சிங்) தவறு): ... −3 < −2 < −1 < 0 < 1 < 2 < 3 < ...


சுழியைவிடப் பெரிய முழுஎண்கள் நேர் முழுஎண்கள் எனவும், சுழியைவிடச் சிறிய முழுஎண்கள் எதிர் முழுஎண்கள் எனவும் அழைக்கப்படும். சுழி நேர் முழு எண்ணோ அல்லது எதிர் முழுஎண்ணோ கிடையாது.

முழுஎண்கள் முழு வரிசைப் பண்புடையாதாக இருப்பதால் பின்வரும் முடிவுகள் சாத்தியமாகின்றன:

  • a < b , c < d எனில் a + c < b + d
  • a < b , 0 < c எனில், ac < bc.

மேற்கோள்கள்[தொகு]

  1. Miller, Jeff (2010-08-29). "Earliest Uses of Symbols of Number Theory". பார்த்த நாள் 2010-09-20.
  2. Peter Jephson Cameron (1998). Introduction to Algebra. Oxford University Press. p. 4. ISBN 978-0-19-850195-4. http://books.google.com/books?id=syYYl-NVM5IC&pg=PA4. 

இவற்றையும் பார்க்கவும்[தொகு]

"http://ta.wikipedia.org/w/index.php?title=முழு_எண்&oldid=1718724" இருந்து மீள்விக்கப்பட்டது