மரபார்ந்த விசையியல்

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
(மரபு இயங்கியல் இலிருந்து வழிமாற்றப்பட்டது)
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்
மரபார்ந்த விசையியல்
வரலாறு · காலக்கோடு

மரபார்ந்த விசையியல், எறிபொருட்கள், இயந்திர உறுப்புக்கள் போன்றனவும்; விண்கலங்கள், கோள்கள், விண்மீன்கள், விண்மீன் கூட்டங்கள் போன்ற வானியல் பொருட்கள் போன்றனவுமான கண்ணுக்குத் தெரியக்கூடிய பொருட்களின் இயக்கங்களை விளக்குவதற்குப் பயன்படும் ஒரு துறை. மேற்குறிப்பிட்ட பெரிய பொருட்களின் இயக்கங்கள் தொடர்பில் துல்லியமான முடிவுகளை வழங்கக்கூடிய மரபார்ந்த விசையியல் துறை; அறிவியல், பொறியியல், தொழில்நுட்பம் ஆகிய துறைகளில் மிகப் பழையதும், மிகப் பெரியதுமான ஒரு பகுதியும் ஆகும்.

இவை தவிர இதில், வளிமங்கள், நீர்மங்கள், திண்மங்கள் ஆகியவை தொடர்பிலான சிறப்புப் பகுதிகளும் உண்டு. இயற்பியலில், பொருட்களினதும், பொருட் தொகுதிகளினதும் இயக்கங்களைக் கட்டுப்படுத்துவனவும், கணிதவியல் அடிப்படையில் விளக்குவனவுமான இயற்பியல் விதிகளோடு தொடர்புள்ள, விசையியல் தொடர்பான இரண்டு துணைப் பிரிவுகளில் மரபார்ந்த விசையியல் ஒன்றாகும். மற்றது குவாண்டம் விசையியல். குறிப்பிடத்தக்களவுக்குப் பெரிய (நாம் அன்றாட வாழ்வில் பயன்படுத்தும் பொருட்கள்), வெற்றிடத்தில் ஒளியின் வேகத்தொடு (c=3.0*10^8) ஒப்பிட்டால் மிகவும் குறைந்த வேகமுடைய பொருட்களோடு சம்பத்தப்பட்ட கணிப்புகளிலேயே மரபார்ந்த விசையியலைப் பயன்படுத்த முடியும். சாதாரண வாகனங்கள் பயணிப்பது, விண்கலங்கள், பந்து, ஆணி இவ்வாறான பொருட்களோடு சம்பத்தப்பட்ட கணிப்புகளில் மரபார்ந்த விசையியல் மிகத்துல்லியமான விளைவைத் தருகின்றது. எனினும் அணுக்கள், உப-அணுத் துணிக்கைகள் சம்பந்தமான கணிப்புகளில் குவாண்டம் விசையியலைப் பயன்படுத்தினால் மாத்திரமே வழு வீதம் குறைவான விளைவை எதிர்பார்க்கலாம். வேகம் ஒளியின் வேகத்தை அண்மிக்கும் சந்தர்ப்பத்திலும் மரபார்ந்த விசையியலைப் பயன்படுத்த இயலாது. மிகச்சிறிய துணிக்கைகள் ஒளியின் வேகத்தை அண்மிக்கும் சந்தர்ப்பங்களில் குவாண்டம் புலக்கோட்பாடைப் பயன்படுத்துவதே சிறப்பானதாகும்.

கோட்பாட்டு விளக்கங்கள்[தொகு]

எறிபொருள் இயக்கம்-மரபார்ந்த விசையியலைப் பயன்படுத்தும் ஒரு பிரிவாகும்.

மரபார்ந்த விசையியலில் கணித்தலை இலகுவாக்குவதற்காக பொருட்களை தனிப் புள்ளிகளாகக் கருத வேண்டும். மரபார்ந்த விசையியலில் அப்புள்ளிப் பொருள் உள்ள இடம், அதன் திணிவு மற்றும் அதில் தாக்கும் விசைகள் மாத்திரமே கருத்தில் கொள்ளப்படும். உண்மையில் எந்தவொரு பொருளும் புள்ளிப் பொருளாகத் தொழிற்பட முடியாது. ம.விசையியலில் ஒரு பொருளின் திணிவு மையமே புள்ளிப் பொருளாகக் கருதப்படும். உதாரணமாக 1 kg பந்தைக் கருதினால் கணித்தலின் போது அப்பந்தின் மையப் பிரதேசத்துக்கே 1 kg திணிவு வழங்கப்பட்டு, அனைத்து விசைகளும் அம்மையப் புள்ளியில் தொழிற்படுவதாகவே கருதப்படும்.

பொருள் இயங்கும் இடம்[தொகு]

ஆள்கூற்று முறைமையைப் பயன்படுத்தி ஒரு பொருள் இயங்கும் இடம் கணிக்கப்படுகின்றது. வேகம், கதி,ஆர்முடுகல் என்பன பொருள் இயங்கும் இடம்/ நிலையுடன் தொடர்புபட்ட கணியங்களாகும்.

வேகம்[தொகு]

ஒரு அலகு நேரத்தைல் ஏற்பட்ட இடப்பெயர்ச்சி வேறுபாடே வேகம் ஆகும்.

\mathbf{v} = {\mathrm{d}\mathbf{r} \over \mathrm{d}t}\,\!.

இதன் போது பொருள் இயங்கும் திசையையும் குறிப்பது அவசியமாகும். நேர்கோட்டு இயக்கத்தின் போது இரு இயங்கும் பொருட்களைக் கருதும் போது திசைக்கேற்றபடி வேகத்தை ஒன்றோடொன்று கூட்டவோ கழிக்கவோ முடியும். உதாரணமாக ஒரு கார் 50 km/h வேகத்துடன் செல்கின்றது. அக்காரை 60 km/h இல் செல்லும் கார் முந்திக் கொண்டு செல்கின்றது. இவற்றின் புவி சார்பான வேகம் இவ்வாறு காணப்பட்டாலும், மெதுவாகச் செல்லும் காரில் உள்ளவர் முந்திக் கொண்டு செல்லும் கார் 60-50= 10 km/h வேகத்தில் செல்வதாகவும், வேகமாகச் செல்லும் காரில் உள்ளவர் மற்றைய கார் பின்னோக்கி 10 km/h அல்லது -10 km/h செல்வதாகவே எண்ணுவார். இது சார்பு வேகம் எனப்படும். இதே போன்று எதிர்த்திசையில் கார்கள் சென்றிருந்தால் வேகங்களைக் கூட்ட வேண்டும்.

ஆர்முடுகல்[தொகு]

ஒரு அலகு நேரத்தில் ஏற்பட்ட வேக மாற்றமே/ திசைவேக மாற்றமே ஆர்முடுகலாகும். வேகம் கூடுவதோ, குறைதலோ, வேகத்தின் திசை மாற்றமடைதலோ ஆர்முடுகலைத் தோற்றுவிக்கும்.

\mathbf{a} = {\mathrm{d}\mathbf{v} \over \mathrm{d}t}.

வேகம் குறைவடைந்து கொண்டு செல்லல் அமர்முடுகல் என பொதுவாக அழைக்கப்பட்டாலும், அதுவும் விசையியலில் ஆர்முடுகலின் ஒரு வகையாகவே கருதப்படும்.

விசை மற்றும் உந்தம்[தொகு]

விசையானது உந்தத்துக்கு நேர்விகிதமானது. இத்தொடர்பை நியூட்டன் என்ற விஞ்ஞானியே முதலில் கண்டுபிடித்தார். இது நியூட்டனின் இரண்டாம் விதி எனவும் அழைக்கப்படுகின்றது.

\mathbf{F} = {\mathrm{d}\mathbf{p} \over \mathrm{d}t} = {\mathrm{d}(m \mathbf{v}) \over \mathrm{d}t}.

மேற்கூறிய சமன்பாட்டில் mv (திணிவு*வேகம்) என்பது உந்தத்தைக் குறிக்கிறது. எனவே இச்சமன்பாடு படி ஒரு அலகு நேரத்தில் ஏற்பட்ட உந்த மாற்றமே விசையாகும். ஆர்முடுகலுக்கான சமன்பாடு a = dv/dt என்பதால், மேற்படிச் சமன்பாட்டை பின்வருமாறு காட்டலாம்.

\mathbf{F} = m \mathbf{a} \, .

எனவே ஒரு பொருளில் சமப்படுத்தப்படாத புறவிசை (F) தொழிற்படும் போது அப்பொருளுக்கு ஆர்முடுகல் (a) காணப்படும். பொருளின் திணிவு (m) அதிகரிக்க ஆர்முடுகல் குறைவடையும்.

வேலை மற்றும் சக்தி[தொகு]

ஒரு பொருளின் மீது மாறா விசை F ஆனது தொழிற்பட்டு பொருளை Δr தூரம் நகர்த்தினால் இங்கு இவ்விசையால் அப்பொருள் மீது வேலை செய்யப்படுகின்றது. எனவே விசையியலில் வேலையானது விசை மற்றும் தூரம் ஆகிய கணியங்களின் பெருக்கமாக உள்ளது.

W = \mathbf{F} \cdot \Delta \mathbf{r} \, .

m திணிவுடைய பொருள் v வேகத்துடன் இயங்குமாயின் அதன் இயக்க சக்தி Ek ஆனது பின்வருமாறு வரையறுக்கப்படுகின்றது.

E_\mathrm{k} = \tfrac{1}{2}mv^2 \, .
"http://ta.wikipedia.org/w/index.php?title=மரபார்ந்த_விசையியல்&oldid=1647718" இருந்து மீள்விக்கப்பட்டது