சு. சி. பிள்ளை

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்
சுப்பையா சிவசங்கரநாராயண பிள்ளை
Ss-pillai.jpg
பிறப்பு ஏப்ரல் 5, 1901(1901-04-05)
பிறப்பிடம் குற்றாலம், தமிழ்நாடு, இந்தியா
இறப்பு ஆகஸ்ட் 31 1950 (அகவை 49)
இறப்பிடம் கெய்ரோ, எகிப்து
வாழிடம் சென்னை, தமிழ்நாடு, இந்தியா
துறை கணிதவியலர்
பணி நிறுவனம் அண்ணாமலைப் பல்கலைக்கழகம்
திருவனந்தபுரம் பல்கலைக்கழகம்
கல்கத்தா பல்கலைக்கழகம்
சென்னைப் பல்கலைக்கழகம்
கல்வி கற்ற இடங்கள் சென்னைப் பல்கலைக்கழகம்
அறியப்படுவது வாரிங் தேற்றம், பிள்ளை பகா எண்கள்

சுப்பையா சிவசங்கரநாராயண பிள்ளை, அல்லது, எஸ்.எஸ்.பிள்ளை (ஏப்ரல் 5, 1901 - ஆகஸ்ட் 31, 1950) இருபதாம் நூற்றாண்டின் சிறந்த இந்தியக் கணிதவியலாளரில் ஒருவர். எண் கோட்பாட்டில் பல நிபுணர்களின் கவனத்தை ஈர்த்த வாரிங் பிரச்சினையில் அவருடைய சாதனை மிகப்பெரிதாகப் பேசப்படுகிற ஒன்று. இந்தியா அவருடைய அகால மரணத்தினால் இன்னும் பல சாதனைகள் புரிந்து நாட்டுக்குப் புகழ் சேர்க்கக்கூடிய ஒருவரை இழந்தது.

பிறப்பும் கல்வியும்[தொகு]

திருநெல்வேலி மாவட்டத்தில், குற்றாலத்திற்கருகிலுள்ள வல்லம் என்ற சிற்றூரில் பிறந்தார். அவருக்கு ஒரு வயது ஆகுமுன்பே தாயார் கோமதி அம்மாள் காலமாகிவிட்டார். தந்தை சுப்பையா பிள்ளை தான் வயதான உறவினப் பெண்மணி ஒருவரின் உதவியுடன் குழந்தையை வளர்த்தார். செங்கோட்டை நடுத்தரப்பள்ளியில் பையன் படிக்கும்போதே சாஸ்திரியார் என்ற ஒர் ஆசிரியர் இவருடைய புத்தி வல்லமையையும் உழைப்பையும் பார்த்துப் பூரித்துப் போனார். இவருடைய பள்ளிப்படிப்பு முடிவதற்குள்ளேயே சுப்பையாபிள்ளை காலமானபோது, அவர்தான் சிவசங்கரநாராயணனின் கல்லூரிப் படிப்பிற்கு உதவிசெய்தார். இடைநிலைக் கல்வி பயின்றது நாகர்கோயிலில் உள்ள ஸ்காட் கிறிஸ்தவக் கல்லூரியில். திருவனந்தபுரம் மஹாராஜா கல்லூரியில் கல்விச் சலுகை பெற்று நன்றாகவே படித்து B.A. பட்டம் பெற்றார்.

கணிதக்கல்வி[தொகு]

மேற்படிப்பிற்காக சென்னைக்குச் சென்றார். சென்னை மாகாணக் கல்லூரியில் 1927 இல் ஆனந்தராவின்கீழ் ஆராய்ச்சி மாணவனாகச் சேர்ந்து முதல்தர ஆராய்ச்சி மாணவன் என்று பெயர் எடுத்தார். ஆனந்தராவுடன் கூட பேராசிரியர் வைத்தியநாதசுவாமியும் இவருக்கு வழிகாட்டினார். சென்னைப் பல்கலைக்கழகம் இவருடைய ஆராய்ச்சிகளைப் பாராட்டி இவருக்கு அறிவியலில் மதிப்புறு முனைவர் பட்டம் (D.Sc.) பட்டமே வழங்கியது. சென்னைப் பல்கலைக்கழகத்தின் முதல் அறிவியலில் மதிப்புறு முனைவர் பட்டம் (D.Sc.) பெற்றவர் இவர்தான்.

தொழில்[தொகு]

  • 1929 - 1941 அண்ணாமலைப் பல்கலைக்கழகம். இங்கேயே அவருடைய முழுத்திறமையும் வெளிப்படத் தொடங்கியது.
  • 1941 . திருவனந்தபுரம் பல்கலைக் கழகம்
  • 1942 கல்கத்தா பல்கலைக் கழகம்.
  • 1943 - 1950 சென்னை பல்கலைக்கழகம்.
  • 1950. Institute of Advanced Studies, Princeton அவரை ஓராண்டிற்காக அழைத்தது.
  • 1950 ஆகஸ்ட்-செப்டம்பரில் ஹார்வர்ட் பல்கலைக்கழகத்தில் நடக்க இருந்த பன்னாட்டு கணித காங்கிரஸினாலும் பேச அழைக்கப்பட்டு, பிரின்ஸ்டன் அழைப்பிற்காகவும் ஆகஸ்ட் 31, TWA விமானத்தில் பயணமானார். ஆனால் கெய்ரோவுக்கருகில் விமானம் விபத்துக்குள்ளாகி, உயிர் துறந்தார்.

சாதனைகள்[தொகு]

76 ஆய்வுக்கட்டுரைகள் எழுதினார். அவை பெரும்பாலும் எண் கோட்பாட்டைப்பற்றியும் டயோபாண்டஸ் தோராயத்தைப் பற்றியும் இருந்தன.

வாரிங் பிரச்சினையில் கண்டுபிடிப்பு[தொகு]

எண் கோட்பாட்டில் வாரிங் பிரச்சினையைப் பற்றிய ஒரு முக்கியமான கண்டுபிடிப்பைச் செய்து சரித்திரம் படைத்தார். 1909இல் டேவிட் ஹில்பர்ட் வாரிங் பிரச்சினையைப் பற்றிய ஓர் அடிப்படைத் தேற்றத்தை நிறுவினார்.
ஹில்பர்ட்-வாரிங் தேற்றம்: ஒவ்வொரு நேர்ம முழு எண்  k க்கும் g(k) என்ற ஒரு மீச்சிறு நேர்ம முழு எண் கீழுள்ள பண்புடன் இருக்கும்:
எந்த நேர்ம முழு எண்ணையும் g(k) எண்ணிக்கை கொண்ட  k - அடுக்குகளின் கூட்டுத் தொகையாகக் காட்டலாம். அதாவது, எத்தனை குறைந்த எண்ணிக்கை கொண்ட k-அடுக்குகளின் கூட்டுத்தொகையாக எல்லா முழுஎண்களையும் சொல்லமுடியுமோ அந்த எண்ணிக்கை g(k)யாகும்.
எடுத்துக்காட்டாக, g(2) = 4. அதாவது, எந்த எண்ணையும் நான்கு எண்ணிக்கைக்கு அதிகமில்லாத எண்களின் வர்க்கங்களின் கூட்டுத்தொகையாகக் காட்டலாம். குறிப்பாக
27 = 16 + 9 + 1 + 1
32 = 16 + 16
77 = 36 + 36 + 4 + 1
200 = 100 + 64 + 36
1770 இலேயே (லாக்ரான்சி) g(2) = 4 என்பது தெரியும். 1910 இலிருந்து g(3) = 9 என்பதும் தெரியும்.
பிள்ளையின் கண்டுபிடிப்பு: (1936). 7 அல்லது 7 க்கு மேலுள்ள எல்லா k க்கும், g(k) = 2k + l - 2; இங்கு, l என்பது (3/2)kஐ விட பெரியதல்லாத மீப்பெரு முழு எண். k = 6 என்ற பட்சத்திலும் 1940 இல் இன்னும் கடினமான ஒரு முறையில் g(6) = 73 என்றும் கணித்தார்.

பிள்ளை பகா எண்கள்[தொகு]

அவர் கண்டுபிடித்த ஒருவித பகா எண்களுக்கு பிள்ளை பகா எண்கள் என்ற பெயர் நிலைத்துவிட்டது. பகாஎண்  p கீழ்வரும் பண்பை உடையதாக இருந்தால் அது பிள்ளை பகா எண் எனப்படும்:
ஒரு நேர்ம முழு எண் இருக்கவேண்டும். அது சரி செய்ய வேண்டிய சமன்பாடுகள்:
(*) n! = -1 mod p
 p \neq 1 mod n
இதன் பொருள்: n!, pஇன் ஏதோ ஒரு மடங்கை விட ஒன்று குறைவு. மற்றும், p - 1, nஇன் எந்த மடங்காவும் இருக்காது.
எடுத்துக்காட்டாக, 79 ஒரு பிள்ளை பகா எண். ஏனென்றால்,
23! + 1, 79 ஆல் சரியாக வகுபடுகிறது. மற்றும், 78, 23இன் எந்த மடங்கும் இல்லை. ஆக, 79 க்குகந்ததாக 23 என்ற் n உள்ளது.
முதல் 39 பிள்ளை பகா எண்கள்:
23, 29, 59, 61, 67, 71, 79, 83, 109, 137, 139, 149, 193, 227, 233, 239, 251, 257, 269, 271, 277, 293, 307, 311, 317, 359, 379, 383, 389, 397,

401, 419, 431, 449, 461, 463, 467, 479, 499

இத்தொடர் முடிவில்லாதது என்று எர்டாஷ், சுப்பராவ், ஹார்டி முதலியவர்கள் கண்டுபிடித்திருக்கிறார்கள்[1].

இவற்றையும் பார்க்கவும்[தொகு]

லாக்ராஞ்சியின் நான்கு வர்க்கத் தேற்றம்

Notes[தொகு]

  1. G. E. Hardy and M. V. Subbarao, "A modified problem of Pillai and some related questions", Amer. Math. Monthly 109 6 (2002): 554 - 559.

உசாத்துணைகள்[தொகு]

  • Historical notes by M.S. Raghunathan, Current Science Vol.85 No.4, 25 Aug 2003 pp. 526–536.
"http://ta.wikipedia.org/w/index.php?title=சு._சி._பிள்ளை&oldid=1576568" இருந்து மீள்விக்கப்பட்டது