சமானம், மாடுலோ n

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்
மாடுலோ கணித ஆய்வுகளைப் பற்றி காஸ் வெளியிட்ட் நூலில் முதல் பதிப்பு. புத்தகத்தின் தலைப்பு டிஸ்க்விசிசனே அரித்மெட்டிக்கே என்பதாகும்.

கணிதத்தில், எண் கோட்பாட்டில், சமானம், மாடுலோ n (Congruence modulo n) என்பது சுழற்சி அடிப்படையில் எண்களைக் கொண்டு கணக்கிடும் ஒரு அடிப்படைக் கருத்து. 1801 இல் காஸ் என்னும் ஜெர்மானியக் கணிதப் பேரறிஞரால் அறிமுகப்படுத்தப்பட்டது.

சமான எண்கணிதம் பயன்படும் ஓர் அன்றாட வழக்கு[தொகு]

இன்றைய நேரம் இப்பொழுது காலை 9 மணியென்றால், இன்னும் 8 மணிநேரம் கழித்து மணி 17 ஆக இருக்கும் என்று சொல்வதில் தவறொன்றுமில்லை. ஆனாலும் மக்கள் அதை மணி மாலை 5 ஆக இருக்கும் என்று சொல்வார்கள், அப்படிப் புரிந்தும் கொள்வார்கள். இங்கு நாம் நம்மை அறியாமலே ஒரு சமான எண்கணிதம் கணிக்கிறோம். அதாவது, 9 + 8 =17 ஆக இருந்தாலும் 17 -12 = 5, என்று 12 மணி ஆனவுடன் அதைத் 'தள்ளிவிட்டு', மறுபடியும் 1 இலிருந்து தொடங்கி 1,2,3, என்று எண்ணுகிறோம். இதுதான் சமான எண்கணிதம் (Congruence arithmetic).

கணிதத்தில் வரையறை[தொகு]

a, b, n முழு எண்களானால் a யும் b யும் n மாடுலோ சமானம் பெற்றிருக்கின்றன என்பதற்கு இலக்கணம்:

  • a - b, எண் n இன் முழு எண் பெருக்காக இருக்கும்.(அ-து, n ஆல் சரியாக வகுபடும்)

இதற்குக்குறியீடு:

a \equiv b (mod n)

இதன் உச்சரிப்பு:

a சமானம் b, மாடுலோ n

இங்கு 'mod' என்ற ஆங்கிலச்சொற்குறி, 'modulus' (மட்டு) என்ற சொல்லுக்காக நிற்கிறது. 'மாடுலோ' என்ற பயன்பாடும் அச்சொல்லிலிருந்து உருவானது. இச்சொல் உலகில் எல்லா மொழிகளிலும் இப்படியே பயன்படுத்தப்பட்டு வருவதாகத் தெரிகிறது.

உடன்விளைவு[தொகு]

'சமானம் மாடுலோ n' ஒரு சமான உறவு. ஏனென்றால்,

  • அது ஒரு எதிர்வு உறவு. அதாவது,  a \equiv a (mod n)
  • அது ஒரு சமச்சீர் உறவு. அதாவது,  a \equiv b (mod n) \Rightarrow  b \equiv a (mod n)
  • அது ஒரு கடப்பு உறவு. அதாவது, a \equiv b (mod n) மற்றும் b \equiv c (mod n) \Rightarrow  a \equiv c (mod n)

எடுத்துக்காட்டுகள்[தொகு]

  • 17 \equiv 5 (mod 12) ஏனென்றால், 17 - 5 = 12
  • 365 \equiv 1 (mod 7) ஏனென்றால், 365 - 1 = 364; இது 7 ஆல் சரியாக வகுபடுகிறது.
  • 27 \equiv 0(mod 3) ஏனென்றால், 27 - 0 =27; இது 3 ஆல் சரியாக வகுபடுகிறது.
  • 100 \equiv 34 (mod 6) ஏனென்றால், 100 - 34 = 66; இது 6 ஆல் சரியாக வகுபடுகிறது.
  • -13 \equiv 2 (mod 5) ஏனென்றால் -13 -2 = -15; இது 5 ஆல் சரியாக வகுபடுகிறது

முதல் மூன்று எடுத்துக்காட்டுகளை வேறுவிதமாகவும் பார்க்கலாம்.

17 ஐ 12 ஆல் வகுத்தால் மீதி 5; அல்லது, 17ம் 5ம் 12 ஆல் வகுபடும்போது ஒரே மீதியை அளிக்கின்றன
365 ஐ 7 ஆல் வகுத்தால் மீதி 1; அல்லது, 365ம் 1ம் 7ஆல் வகுபடும்போது ஒரே மீதியை அளிக்கின்றன.
27 ஐ 3 ஆல் வகுத்தால் மீதி 0; அல்லது 27ம் 0வும் 3 ஆல் வகுபடும்போது ஒரே மீதியை அளிக்கின்றன.
100 ஐ 6 ஆல் வகுத்தால் 34 மீதி வராது. ஆனாலும், 100, 34 இரண்டும் 6 ஆல் வகுபடும்போது ஒரே மீதியை அளிக்கின்றன.

இந்த இரண்டாவது பண்பைக்கொண்டு சமானம் மாடுலோ n க்கு இப்படியும் இலக்கணம் வரையலாம்: n ஒரு நேர்ம முழுஎண்ணாகவும், a, b இரண்டும் எதிர்ம எண்களாக இல்லாமலும் இருந்தால் a \equiv b (mod n) க்கு இன்னொரு இலக்கணம்:

  • a யும் b யும் n ஆல் வகுபடும்போது ஒரே மீதியை அளிக்கும்.

எனினும் a, n ஆல் வகுபடும்போது b மீதமாக வராத பட்சத்தில், இந்தச் சமானத்தை கணினிப் பொறியாளர்கள்

a \equiv b (modulo n) என்று எழுதுகிறார்கள். ஆக 100 \equiv 34 (modulo 6)

மேலும், a \equiv 0 (mod n) என்று சொல்வதற்குப் பொருள்: a என்ற எண், n ஆல் சரியாக வகுபடுகிறது.

எல்லாப்பட்சத்திலும்  a \equiv b (mod n) \Longleftrightarrow   \exists முழு எண் q \ni a = nq + b

மற்ற விளைவுகள்[தொகு]

  • a \equiv b(mod n), மற்றும் c \equiv d(mod n) என்றால்
a + c \equiv (b + d) (mod n)
 a - c \equiv (b-d) (mod n)
k ஒரு முழு எண்ணானால், ka \equiv kb (mod n)
ac \equiv bd (mod n)
m ஒரு நேர்ம முழு எண்ணானால், a^m   \equiv  b^m (mod n)

இவ்விளைவுகளெல்லாம் சேர்ந்ததுதான் மாடுலோ எண் கணிதம் (modular arithmetic) எனப்படும்.

"http://ta.wikipedia.org/w/index.php?title=சமானம்,_மாடுலோ_n&oldid=1667424" இருந்து மீள்விக்கப்பட்டது