ஒரு புள்ளியின் படி

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்
படம் 1. எடுத்துக்கொள்ளப்பட்ட வட்டத்தின் மையம் O. வட்டத்திற்கு வெளியேயுள்ள ஒரு புள்ளி P . இவை இரண்டுக்கும் இடையேயுள்ள தூரம் s (ஆரஞ்சு). வட்ட ஆரம் r (நீலம்). தொடுகோட்டுத்துண்டு PT (சிவப்பு) இன் வர்க்கம் P புள்ளியின் படியாகும்.

அடிப்படைத் தள வடிவவியலில் ஒரு புள்ளியின் படி (power of a point) என்பது, தரப்பட்ட ஒரு வட்டத்திலிருந்து அப்புள்ளியின் சார்பு தொலைவினைத் தரும் ஒரு மெய்யெண். r அலகு ஆரமுள்ள வட்டம் C ஐப் பொறுத்து, ஒரு புள்ளி P இன் படி:

p = s^2 - r^2, \,

இங்கு P வட்டமையம் O இரண்டுக்கும் இடைப்பட்ட தொலைவு s .

இந்த வரையறைப்படி, ஒரு புள்ளி வட்டத்துக்குள் இருந்தால் அதன் படி எதிர் மெய்யெண்ணாகவும்; வட்டத்தின் மீது இருந்தால் பூச்சியமாகவும்; வட்டத்திற்கு வெளியில் இருந்தால் நேர் மெய்யெண்ணாகவும் இருக்கும். வட்டத்திற்கு வெளியில் அமையும் புள்ளியின் படி, அப்புள்ளியை மையமாகக் கொண்டு தரப்பட்ட வட்டத்தைச் செங்குத்தாக வெட்டும் வட்டத்தின் ஆரமாக இருக்கும்.(படம் 2) ஒரு புள்ளியின் படி என்பது அப்புள்ளியைப் பொறுத்த, வட்டப்படி அல்லது வட்டத்தின் படி எனவும் அழைக்கப்படுகிறது.

P இலிருந்து வரையப்படும் ஒரு கதிர், வட்டத்தை வெட்டும் இரு புள்ளிகளுக்கும் P -க்கும் இடைப்பட்ட தூரங்களின் பெருக்கற்பலனாகவும் புள்ளியின் படியை வரையறுக்கலாம். படம் 1 இல் P இலிருந்து வரையப்படும் ஒரு கதிர் வட்டத்தை வெட்டும் இரு புள்ளிகள் M , N ; தொடு கதிர் T என்ற ஒரு புள்ளியில் மட்டும் வெட்டுகிறது; கிடைமட்டக் கதிர் A , B புள்ளிகளில் (விட்ட முனைகள்) வெட்டுகிறது. வட்டத்தைப் பொறுத்து, P புள்ளியின் படி:

\overline{\mathbf{PT}}^2 =\overline{\mathbf{PM}}\times\overline{\mathbf{PN}} =\overline{\mathbf{PA}}\times\overline{\mathbf{PB}} =
\left(s - r \right)\times\left(s + r \right) = s^2 - r^2 = h. \,

மேற்காணும் முடிவு சிலசமயங்களில் "வெட்டுக்கோடு-தொடுகோடு தேற்றம்" அல்லது "வெட்டும் நாண்கள் தேற்றம்", அல்லது "ஒரு புள்ளியின் படி தேற்றம்" எனவும் அழைக்கப்படும்.

பல வடிவவியல் வரையறைகளில் புள்ளியின் படி பயன்படுகிறது. எடுத்துக்காட்டாக இரு வட்டங்களின் சமதொடு அச்சு என்பது, அவ்விரு வட்டங்களைப் பொறுத்து சம படிகளைக் கொண்ட புள்ளிகளாலான நேர்கோடாகும். மேலும் பொதுமையம் கொண்டிராத மூன்று வட்டங்களின் சமதொடு மையம் என்பது அம்மூன்று வட்டங்களைப் பொறுத்து சமபடிகளை உடைய புள்ளியாகும். ஒரு வட்டத் தொகுப்பின் படி வரைபடமானது (power diagram) அவ்வட்டங்கள் அமையும் தளத்தை, ஒவ்வொரு வட்டத்துக்கும் ஒரு பகுதியாகப் பிரிக்கும். ஒரு வட்டத்துக்குரிய பகுதியிலுள்ள ஒரு புள்ளியின் படி, ஏனைய வட்டங்களை விட அந்த வட்டத்துக்குச் சிறியதாக இருக்கும்.

செங்குத்து வட்டம்[தொகு]

Figure 2: P புள்ளியை மையமாகக் கொண்ட இடையிட்ட வட்டம், தரப்பட்ட வட்டத்தை (கருப்பு) செங்குத்தாக வெட்டுகிறது. வெட்டும் புள்ளி T. இந்த செங்குத்து வட்டத்தின் ஆரத்தின் வர்க்கம், தரப்பட்ட வட்டத்தைப் பொறுத்து P புள்ளியின் படி.

வட்டத்துக்கு வெளியேயுள்ள புள்ளி P இன் படி:

p =R^2

இங்கு R என்பது P ஐ மையமாகக் கொண்டு, தரப்பட்ட வட்டத்தைச் செங்குத்தாக வெட்டும் வட்டத்தின் ஆரமாகும். இரு வட்டங்களும் வெட்டும் புள்ளி T எனில், ஆரங்கள் OT , OP -க்கு இடையேயுள்ள கோணம் செங்கோணம். எனவே வெட்டும் புள்ளியில், ஒரு வட்டத்தின் ஆரம் இரண்டாவது வட்டத்திற்குத் தொடுகோடாக அமையும். OPT ஒரு செங்கோண முக்கோணம்.

\Rightarrow R^2 = s^2 - r^2 = p \, இதுவே புள்ளி P இன் படி.

இதில் s என்பது, P , O இடைப்பட்ட தூரம்.

இரு வட்டங்களின் சமதொடு அச்சு, சமதொடு மையம் பற்றித் தெரிந்து கொள்வதற்கு, செங்குத்து வட்டம் வரைதல் உதவியாக இருக்கும். செங்குத்து வட்டம் வரைய புள்ளி T ஐத் தீர்மானித்தல் அவசியம்.

T காணல்

தரப்பட்ட வட்ட மையம் O மற்றும் எடுத்துக்கொள்ளப்பட்ட புள்ளி P இவ்விரண்டின் நடுப்புள்ளியை மையமாகக் கொண்டு இப்புள்ளிகளின் வழியே செல்லுமாறு வரையப்படும் அரைவட்டம் தரப்பட்ட வட்டத்தை வெட்டும் புள்ளி T .

PT ஐ ஆரமாகவும் P ஐ மையமாகவும் கொண்டு செங்குத்து வட்டம் வரையலாம்.

தேற்றங்கள்[தொகு]

ஜேக்கோப் ஸ்டெயினரின் புள்ளியின் படி தேற்றம்:

புள்ளி A வழியாகச் செல்லும் ஒரு கோடு, வட்டம் C ஐ வெட்டும் புள்ளிகள் P , Q எனில் A இன் படி:

AP \cdot AQ \,

புள்ளி வட்டத்துக்கு வெளியில் இருந்தால் இப்பெருக்கற்பலன் நேர் மதிப்பாகவும், புள்ளி வட்டத்துக்குள் இருந்தால் எதிர் மதிப்பாகவும் இருக்கும். புள்ளி வட்டத்தின் மீது இருந்தால் பூச்சியமாகும்; அப்போது A வழிச் செல்லும் கோடு வட்டத்தை ஒரு புள்ளியில் மட்டுமே சந்திக்கும், அதாவது வட்டத்துக்குத் தொடுகோடாக இருக்கும்.

புள்ளி A , வட்டத்தினுள் மற்றும் வட்டத்திற்கு வெளியே அமைவதைப் பொறுத்து இத்தேற்றத்திற்கு இரு கிளைமுடிவுகள் உள்ளன:

  • கிளை முடிவு 1 (வெட்டும் நாண்களின் தேற்றம்):

A வட்டத்துக்குள் அமைகிறது; மேலும் PQ , RS ஆகிய வட்டத்தின் இரு நாண்களும் A இல் வெட்டுகின்றன எனில்,

 AP \cdot AQ = AR \cdot AS \,
இப்பெருக்கற்பலன்களின் பொதுமதிப்பு, வட்டத்தைப் பொறுத்து A புள்ளியின் படியின் எதிர் மதிப்பாகும்.
  • கிளை முடிவு 2 (வெட்டும் வெட்டுக்கோடுகளின் தேற்றம்):

வட்டத்தின் நாண்கள் PQ , RS இரண்டும் வட்டத்துக்கு வெளியே A புள்ளியில் வெட்டிக் கொள்கின்றன எனில்,

AP \cdot AQ = AR \cdot AS \,
இப்பெருக்கற்பலன்களின் பொதுமதிப்பு, A புள்ளியின் வட்டத்தைப் பொறுத்த படியின் நேர் மதிப்பாகும்.
  • தொடுகோடு-வெட்டுக்கோடு தேற்றம்:

இத்தேற்றம், வெட்டும் வெட்டுக்கோடுகளின் தேற்றத்தில் Q , P புள்ளிகள் இரண்டும் ஒன்றாக அமையும் சிறப்புவகையாகும்.

AP \cdot AQ = AR \cdot AS \,
AP \cdot AP = AR \cdot AS \,
AP^2 = AR \cdot AS \,

மேற்கோள்கள்[தொகு]

  • Coxeter, H. S. M. (1969), Introduction to Geometry (2nd ed.), New York: Wiley .
  • Darboux, Gaston (1872), "Sur les relations entre les groupes de points, de cercles et de sphéres dans le plan et dans l’espace", Annales Scientifiques de l'École Normale Supérieure 1: 323–392 .
  • Steiner, Jakob (1826), "Einige geometrische Betrachtungen", Journal für die reine und angewandte Mathematik 1: 161–184 .

மேலும் படிக்க[தொகு]

வெளி இணைப்புகள்[தொகு]

"http://ta.wikipedia.org/w/index.php?title=ஒரு_புள்ளியின்_படி&oldid=1705170" இருந்து மீள்விக்கப்பட்டது