ஈரோனின் வாய்பாடு

கட்டற்ற கலைக்களஞ்சியமான விக்கிப்பீடியாவில் இருந்து.
தாவிச் செல்லவும்: வழிசெலுத்தல், தேடல்
ஒரு முக்கோணத்தின் பக்கங்கள் a, b, c எனவும் அவற்றின் கோணங்களும் காட்டப்பட்டுள்ளன.

முக்கோணவியலில் ஈரோன் அல்லது ஈரோவின் வாய்பாடு (Heron's formula) என்பது ஒரு முக்கோணத்தின் பரப்பளவை அதன் பக்கங்களின் நீளங்களின் அளவுகளைக் கொண்டு கணிக்கப் பயன்படும் ஒரு பயன்மிகுந்த வாய்பாடு. ஈரோன் (Heron or Hero) அல்லது ஈரோவின் வாய்பாட்டின்படி, ஒரு முக்கோணத்தின் பக்க நீளங்கள் a, b, c ஆகவும், அம்முக்கோணத்தின் சுற்றளவின் பாதி s ஆகவும் இருந்தால், அதன் பரப்பளவு A என்பது கீழ்க்காணும் சமன்பாட்டின்படி உறவு கொள்ளும்.

A = \sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}

முக்கோணத்தின் சுற்றளவின் பாதியாகிய s ஐக் கீழ்க்காணுமாறு எழுதலாம்.

s=\frac{a+b+c}{2}.

ஈரோனின் வாய்பாட்டைக் கீழ்க்காணுமாறும் எழுதலாம்:

A={\ \sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a-b)\,}\ \over 4}
A={\ \sqrt{2(a^2 b^2+a^2c^2+b^2c^2)-(a^4+b^4+c^4)\,}\ \over 4}
A={\ \sqrt{(a^2 + b^2 + c^2)^2 - 2(a^4 + b^4 + c^4)\,}\ \over 4}.

வரலாறு[தொகு]

இவ்வாய்பாடு, அலெக்சான்றியாவின் ஈரோன் என்பவர் கண்டுபிடித்ததாகக் கருதுகின்றனர். இவ்வாய்பாடும் அதன் நிறுவலும் அவர் கி.பி 60 இல் எழுதிய மெட்ரிக்கா (Metrica) என்னும் நூலில் உள்ளது. பண்டைக்காலத்தில் அவர்கள் அறிந்திருந்த வாய்பாடுகள் அதில் இருப்பதால், அவருக்கு முன்னரே கூட இவ் வாய்பாடு இருந்திருக்கலாம் என்று அறிஞர்கள் கருதுகின்றனர். [1]

ஈரோனின் வாய்பாடுக்கு இணையான பிறிதொரு வாய்பாடு:

A=\frac1{2}\sqrt{a^2 c^2 - \left( \frac{a^2+c^2-b^2}{2} \right)^2}

மேலுள்ள வாய்பாட்டை சீனர்கள் தாமாக கிரேக்கர்களின் துணையின்றி கண்டுபிடித்தனர். இவ்வாய்பாடு சின் ஜியுஷாவோ (Qin Jiushao) என்பவர் கி.பி. 1247 இல் எழுதிய ஷுஷு ஜியுஷாங் ) Shushu Jiuzhang ) என்னும் நூலில் உள்ளது.

நிறுவல்[தொகு]

பண்டைய ஈரோன் கொடுத்த நிறுவல் போல் அல்லாமல், தற்கால முக்கோணவியல் மற்றும் இயற்கணிதம் அடிப்படையிலான நிறுவலைக் கீழே காணலாம். முதலில் a, b, c என்பன ஒரு முக்கோணத்தின் பக்கங்களாகவும் (பக்க நீளங்களாகவும்), A, B, C என்பன அப்பக்கங்களுக்கு நேர் எதிரான கோணங்களாகவும் கொள்வோம். இப்பொழுது கோணம் C யின் cos (காஸ் அல்லது அண்மம்) என்பதை கொசைன் விதிப்படி (அண்மங்களின் விதிப்படி) கீழ்க்காணுமாறு எழுதலாம்.

\cos(C) = \frac{a^2+b^2-c^2}{2ab}

சைனுக்கும் (sin) காஸுக்கும் (cos) உள்ள தொடர்பின்படி கீழ்க்காணுமாறு எழுதலாம்:

\sin(C) = \sqrt{1-\cos^2(C)} = \frac{\sqrt{4a^2 b^2 -(a^2 +b^2 -c^2)^2 }}{2ab}.

முக்கோணத்தின் பக்கம் a ஐ அடியாகக் கொண்டால் முக்கோணத்தின் குத்துயரம் bsin(C) என்பதால் கீழ்க்காணுமாறு எழுதலாம். கீழ்க்காணும் தொடர்களில் base என்பது அடி அல்லது அடிப்பக்கம், altitude என்பது குத்துயரம்.

 A\, = \frac{1}{2} (\mbox{base}) (\mbox{altitude})
= \frac{1}{2} ab\sin(C)
= \frac{1}{4}\sqrt{4a^2 b^2 -(a^2 +b^2 -c^2)^2}
= \frac{1}{4}\sqrt{(2a b -(a^2 +b^2 -c^2))(2a b +(a^2 +b^2 -c^2))}
= \frac{1}{4}\sqrt{(c^2 -(a -b)^2)((a +b)^2 -c^2)}
= \frac{1}{4}\sqrt{(c -(a -b))((c +(a -b))((a +b) -c))((a +b) +c)}
= \sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}.

மேலுள்ள தொடர்புகளில் இருமடிகள் இரண்டின் கழித்தலின் வாய்பாடு (a^2-b^2 = \left(a+b\right)\left(a-b\right) ) இரு முறை பயன்படுத்தப்பட்டுள்ளது.

பித்தேகோரசின் தேற்றத்தைன் வழி நிறுவல்[தொகு]

ஒரு முக்கோணத்தின் c என்னும் அடியை குத்தியரம் h என்னும் கோடு d+(cd) என்னுமாறு பகிர்கின்றது (பங்கிடுகின்றது).

கீழ்க்காணும் எண்ணப்போக்கு ஈரோனின் வாய்பாட்டை பித்தேகோரசின் தேற்றத்தோடு இணைக்கின்றது.

படத்தில் உள்ள முக்கோணத்தில் பித்தேகோரசின் தேற்றத்தின் படி (ch)^2 அல்லது

(cb)^2-(cd)^2 என்பது ஈரோனின் வாய்பாட்டின் இடப்பக்கத்தோடு ஒப்பிடலாம்:
4A^2= 4s(s-a)(s-b)(s-c) என்று எழுதும்பொழுது, ஈரோனின் வாய்பாடு அதேபோல வலப்புறத்தில் உள்ளதை
(s(s-a)+(s-b)(s-c))^2   −   ((s(s-a)-(s-b)(s-c))^2 என்று பின்வரும் வாய்பாட்டின்படி எழுதலாம்:
(p+q)^2-(p-q)^2=4pq. எனவே கீழ்க்காண்பவற்றைச் சரியென்று காட்டினால் போதுமானது.
 cb=s(s-a)+(s-b)(s-c),
 cd = s(s-a)-(s-b)(s-c).

மேலுள்ளவற்றில் முதலாவது உள்ள சமன்பாட்டில் s என்பதற்கு (a+b+c)/2 என்பதை ஈடாக பெயர்த்து இட்டு எளிமைப்படுத்தினால் பெறலாம். இதனையே இரண்டாவது சமன்பாட்டில் பெயர்த்து இட்டால் s(s-a)-(s-b)(s-c) என்றும், அதன் வழி (b^2+c^2-a^2)/2 என்றும் உணரலாம். இப்பொழுது b^2 என்பதை d^2+h^2 என்றும், a^2 என்பதை (c-d)^2+h^2 என்றும், பித்தேகோரசின் தேற்றத்தின்படி எழுதினால், cd ஐ நாம் தேடியவாறு பெறலாம்.

எண்கணிப்பின் திடப்பாடு (numerical stability)[தொகு]

மேற்குறிப்பிட்ட ஈரோனின் வாய்பாடு மிகச்சிறிய கோணங்களுக்காக எண்களால் கணிக்கும்பொழுது கட்டுப்படாமல் (திடப்படாமல்) போகும். இதற்கு மாற்றாக முக்கோணத்தின் பக்கங்களை கீழ்க்காணுமாறு மாற்றி அமைக்கலாம் [2] t: abc and computing

 A = \frac{1}{4}\sqrt{(a+(b+c)) (c-(a-b)) (c+(a-b)) (a+(b-c))}.

எண்கணிப்பின் திடப்பாட்டுக்கு மேலுள்ள பிறைக்குறிகள் தேவைப்படுகின்றன.

பொதுமைப்பாடுகள்[தொகு]

ஈரோனின் வாய்பாடு பிரம்மகுப்தாவின் வாய்பாட்டின் ஒரு சிறப்பு உள்வகுப்பு வகை ஆகும். இவ்விரண்டுமே நாற்கரங்களின் பரப்பளவு பற்றிய பிரெட்ஷ்னைடரின் வாய்பாட்டின் சிறப்பு உள்வகைகள்தான். இவ்விரண்டு வாய்பாடுகளிலும் நாற்கரத்தின் ஒரு பக்கத்தின் நீளத்தைச் சுழியாக மாற்றினால் ஈரோனின் வாய்பாடு கிட்டும்.

அதாவது ஈரோனின் வாய்பாடு சரிவகம் என்னும் நாற்கரத்தின் பரப்பளவை அதன் நான்கு பக்கங்களின் நீளத்தைக் கொண்டு கணக்கிடும் முறையின் உள்தனி வகையாகும். ஏனெனில் சரிவகத்தின் சிறிய பக்கத்தின் நீளத்தைச் சுழியாகக் கொண்டால் ஈரோனின் வாய்பாடு கிட்டும்.

மூன்று திசையன்களுக்கு (வெக்டார்களுக்கு) இடையே உள்ள தொலைவுகளின் இருமடிகளாக உள்ள அணிக்கோவையாகவும் ஈரோனின் வாய்பாட்டைக் காட்டலாம்:

 A =  \frac{1}{4} \sqrt{ \begin{vmatrix} 
  0 & a^2 & b^2 & 1 \\
a^2 & 0   & c^2 & 1 \\
b^2 & c^2 & 0   & 1 \\
  1 &   1 &   1 & 0
\end{vmatrix} }

மேற்குறிப்பிட்டுளது மூன்று-எளிகம் (three-simplex) என்பதின் கன அளவைக் குறிப்பிடும் டார்ட்டாக்ளியாவின் வாய்பாட்டுடன் ஒப்புறவு உடையது.

நான்முக முக்கோணகத்திற்கு ஈரோன் வாய்பாடு போன்ற ஒரு வாய்பாடு[தொகு]

U,\, V,\, W,\, u,\, v,\, w என்பன நான்முக முக்கோணகத்தி ன் ஓரங்களின் தொலைவுகளாகக் கொண்டால் (முதல் மூன்றும் முக்கோணத்தினது; u\, U\, எதிரானவை முதலான் வகையில் கொண்டால்), பின்


Volume = \sqrt {\frac {\,( - a + b + c + d)\,(a - b + c + d)\,(a + b - c + d)\,(a + b + c - d)}{192\,u\,v\,w}}

மேலுள்ளவற்றில்

a = \sqrt {xYZ}
b = \sqrt {yZX}
c = \sqrt {zXY}
d = \sqrt {xyz}
X = (w - U + v)\,(U + v + w)
x = (U - v + w)\,(v - w + U)
Y = (u - V + w)\,(V + w + u)
y = (V - w + u)\,(w - u + V)
Z = (v - W + u)\,(W + u + v)
z = (W - u + v)\,(u - v + W)

மேற்கோள்களும் அடிக்குறிப்புகளும்[தொகு]

  1. Heron's Formula - from Wolfram MathWorld
  2. http://http.cs.berkeley.edu/~wkahan/Triangle.pdf
  • Heath, Thomas L. (1921). A History of Greek Mathematics (Vol II). Oxford University Press. பக். 321-323. 

வெளி இணைப்புகள்[தொகு]

"http://ta.wikipedia.org/w/index.php?title=ஈரோனின்_வாய்பாடு&oldid=1454880" இருந்து மீள்விக்கப்பட்டது